Improving management of febrile neutropenia in oncology patients: the role of artificial intelligence and machine learning.

dc.contributor.authorGallardo Pizarro, Antonio
dc.contributor.authorPeyrony, Olivier
dc.contributor.authorChumbita, Mariana
dc.contributor.authorMonzó Gallo, Patricia
dc.contributor.authorAiello, Tommaso Francesco
dc.contributor.authorTeijon Lumbreras, Christian
dc.contributor.authorGras, Emmanuelle
dc.contributor.authorMensa Pueyo, Josep
dc.contributor.authorSoriano Viladomiu, Alex
dc.contributor.authorGarcia Vidal, Carolina
dc.date.accessioned2024-12-03T16:33:08Z
dc.date.available2025-03-07T06:10:10Z
dc.date.issued2024-03-08
dc.date.updated2024-12-03T16:33:08Z
dc.description.abstractIntroduction: Artificial intelligence (AI) and machine learning (ML) have the potential to revolutionize the management of febrile neutropenia (FN) and drive progress toward personalized medicine. Areas covered: In this review, we detail how the collection of a large number of high-quality data can be used to conduct precise mathematical studies with ML and AI. We explain the foundations of these techniques, covering the fundamentals of supervised and unsupervised learning, as well as the most important challenges, e.g. data quality, 'black box' model interpretation and overfitting. To conclude, we provide detailed examples of how AI and ML have been used to enhance predictions of chemotherapy-induced FN, detection of bloodstream infections (BSIs) and multidrug-resistant (MDR) bacteria, and anticipation of severe complications and mortality. Expert opinion: There is promising potential of implementing accurate AI and ML models whilst managing FN. However, their integration as viable clinical tools poses challenges, including technical and implementation barriers. Improving global accessibility, fostering interdisciplinary collaboration, and addressing ethical and security considerations are essential. By overcoming these challenges, we could transform personalized care for patients with FN.
dc.format.extent27 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec747911
dc.identifier.idimarina9389368
dc.identifier.issn1478-7210
dc.identifier.pmid38457198
dc.identifier.urihttps://hdl.handle.net/2445/216908
dc.language.isoeng
dc.publisherTaylor & Francis
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1080/14787210.2024.2322445
dc.relation.ispartofExpert Review of Anti-infective Therapy, 2024, vol. 22, num.4, p. 179-187
dc.relation.urihttps://doi.org/10.1080/14787210.2024.2322445
dc.rights(c) Taylor & Francis, 2024
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Medicina)
dc.subject.classificationNeutropènia
dc.subject.classificationFebre
dc.subject.classificationMalalts de càncer
dc.subject.classificationIntel·ligència artificial
dc.subject.classificationAprenentatge automàtic
dc.subject.otherNeutropenia
dc.subject.otherFever
dc.subject.otherCancer patients
dc.subject.otherArtificial intelligence
dc.subject.otherMachine learning
dc.titleImproving management of febrile neutropenia in oncology patients: the role of artificial intelligence and machine learning.
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
858646.pdf
Mida:
834.67 KB
Format:
Adobe Portable Document Format