Mixtures gaussianes i algorisme EM

dc.contributor.advisorFortiana Gregori, Josep
dc.contributor.authorBaena Espejo, Andrea
dc.date.accessioned2022-05-31T11:38:05Z
dc.date.available2022-05-31T11:38:05Z
dc.date.issued2022-01-24
dc.descriptionTreballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2022, Director: Josep Fortiana Gregorica
dc.description.abstract[en] In a statistical context, we can define a mixture model as a probabilistic model used to represent the presence of subpopulations within the same population. However, we can also say that a mixture model corresponds to a distribution (formed by a convex linear combination of other distributions) that represents the probability distribution of an observation in a population. Mixture models are used to create statistical inferen- ces, approximations, and predictions about the properties of subpopulations based on observations made about the population studied, without the need to identify the corresponding subpopulation of each observation. In this project, we will study a particular case of mixture models: the Gaussian mixture model (mixture of multivariate Gaussian distributions). The EM algorithm is a method that allows us to estimate the parameters of a statistical model when the data is incomplete or when the model contains unknown variables. In the case of mixture models, the unknown variables are those that tell us which component generated each observation in the sample. In this project, we will study the EM algorithm from different points of view, and we will use it to estimate the parameters of the Gaussian mixture model.ca
dc.format.extent40 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/186129
dc.language.isocatca
dc.rightscc-by-nc-nd (c) Andrea Baena Espejo, 2022
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceTreballs Finals de Grau (TFG) - Matemàtiques
dc.subject.classificationAnàlisi multivariableca
dc.subject.classificationTreballs de fi de grau
dc.subject.classificationTeoria de l'estimacióca
dc.subject.classificationAlgorismesca
dc.subject.classificationEstadística matemàticaca
dc.subject.otherMultivariate analysisen
dc.subject.otherBachelor's theses
dc.subject.otherEstimation theoryen
dc.subject.otherAlgorithmsen
dc.subject.otherMathematical statisticsen
dc.titleMixtures gaussianes i algorisme EMca
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 2 de 2
Carregant...
Miniatura
Nom:
codeTFG.html
Mida:
1.33 MB
Format:
Hypertext Markup Language
Descripció:
Codi font
Carregant...
Miniatura
Nom:
tfg_baena_espejo_andrea.pdf
Mida:
684.99 KB
Format:
Adobe Portable Document Format
Descripció:
Memòria