Stability of syzygy bundles
| dc.contributor.author | Macias Marques, Pedro Correia Gonçalves | |
| dc.contributor.author | Miró-Roig, Rosa M. (Rosa Maria) | |
| dc.date.accessioned | 2016-03-17T16:23:14Z | |
| dc.date.available | 2016-03-17T16:23:14Z | |
| dc.date.issued | 2011 | |
| dc.date.updated | 2016-03-17T16:23:19Z | |
| dc.description.abstract | We show that given integers $ N$, $ d$ and $ n$ such that $ {N\ge2}, (N,d,n)$ $ \ne(2,2,5)$, and $ {N+1\le n\le\tbinom{d+N}{N}}$, there is a family of $ n$ monomials in $ K\left[X_0,\ldots,X_N\right]$ of degree $ d$ such that their syzygy bundle is stable. Case $ {N\ge3}$ was obtained independently by Coanda with a different choice of families of monomials. For $ {(N,d,n)=(2,2,5)}$, there are $ 5$ monomials of degree $ 2$ in $ K\left[X_0,X_1,X_2\right]$ such that their syzygy bundle is semistable. | |
| dc.format.extent | 16 p. | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.idgrec | 589161 | |
| dc.identifier.issn | 0002-9939 | |
| dc.identifier.uri | https://hdl.handle.net/2445/96592 | |
| dc.language.iso | eng | |
| dc.publisher | American Mathematical Society (AMS) | |
| dc.relation.isformatof | Reproducció del document publicat a: http://dx.doi.org/10.1090/S0002-9939-2011-10745-7 | |
| dc.relation.ispartof | Proceedings of the American Mathematical Society, 2011, vol. 139, p. 3155-3170 | |
| dc.relation.uri | http://dx.doi.org/10.1090/S0002-9939-2011-10745-7 | |
| dc.rights | (c) American Mathematical Society (AMS), 2011 | |
| dc.rights.accessRights | info:eu-repo/semantics/openAccess | |
| dc.source | Articles publicats en revistes (Matemàtiques i Informàtica) | |
| dc.subject.classification | Àlgebra | |
| dc.subject.other | Algebra | |
| dc.title | Stability of syzygy bundles | |
| dc.type | info:eu-repo/semantics/article | |
| dc.type | info:eu-repo/semantics/publishedVersion |
Fitxers
Paquet original
1 - 1 de 1