Carregant...
Miniatura

Tipus de document

Article

Versió

Versió publicada

Data de publicació

Tots els drets reservats

Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/123379

Testing the mutual information expansion of entropy with multivariate Gaussian distributions

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

The mutual information expansion (MIE) represents an approximation of the configurational entropy in terms of low-dimensional integrals. It is frequently employed to compute entropies from simulation data of large systems, such as macromolecules, for which brute-force evaluation of the full configurational integral is intractable. Here, we test the validity of MIE for systems consisting of more than m = 100 degrees of freedom (dofs). The dofs are distributed according to multivariate Gaussian distributions which were generated from protein structures using a variant of the anisotropic network model. For the Gaussian distributions, we have semi-analytical access to the configurational entropy as well as to all contributions of MIE. This allows us to accurately assess the validity of MIE for different situations. We find that MIE diverges for systems containing long-range correlations which means that the error of consecutive MIE approximations grows with the truncation order n for all tractable n ≪ m. This fact implies severe limitations on the applicability of MIE, which are discussed in the article. For systems with correlations that decay exponentially with distance, MIE represents an asymptotic expansion of entropy, where the first successive MIE approximations approach the exact entropy, while MIE also diverges for larger orders. In this case, MIE serves as a useful entropy expansion when truncated up to a specific truncation order which depends on the correlation length of the system.

Matèries (anglès)

Citació

Citació

GOETHE, Martin, FITA RODRÍGUEZ, Ignasi, RUBÍ CAPACETI, José miguel. Testing the mutual information expansion of entropy with multivariate Gaussian distributions. _Journal of Chemical Physics_. 2017. Vol. 147, núm. 22, pàgs. 224102-1-224102-9. [consulta: 20 de gener de 2026]. ISSN: 0021-9606. [Disponible a: https://hdl.handle.net/2445/123379]

Exportar metadades

JSON - METS

Compartir registre