Testing the mutual information expansion of entropy with multivariate Gaussian distributions

dc.contributor.authorGoethe, Martin
dc.contributor.authorFita Rodríguez, Ignasi
dc.contributor.authorRubí Capaceti, José Miguel
dc.date.accessioned2018-07-05T11:37:04Z
dc.date.available2018-12-14T06:10:24Z
dc.date.issued2017-12-14
dc.date.updated2018-07-05T11:37:04Z
dc.description.abstractThe mutual information expansion (MIE) represents an approximation of the configurational entropy in terms of low-dimensional integrals. It is frequently employed to compute entropies from simulation data of large systems, such as macromolecules, for which brute-force evaluation of the full configurational integral is intractable. Here, we test the validity of MIE for systems consisting of more than m = 100 degrees of freedom (dofs). The dofs are distributed according to multivariate Gaussian distributions which were generated from protein structures using a variant of the anisotropic network model. For the Gaussian distributions, we have semi-analytical access to the configurational entropy as well as to all contributions of MIE. This allows us to accurately assess the validity of MIE for different situations. We find that MIE diverges for systems containing long-range correlations which means that the error of consecutive MIE approximations grows with the truncation order n for all tractable n ≪ m. This fact implies severe limitations on the applicability of MIE, which are discussed in the article. For systems with correlations that decay exponentially with distance, MIE represents an asymptotic expansion of entropy, where the first successive MIE approximations approach the exact entropy, while MIE also diverges for larger orders. In this case, MIE serves as a useful entropy expansion when truncated up to a specific truncation order which depends on the correlation length of the system.
dc.format.extent1 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec675833
dc.identifier.issn0021-9606
dc.identifier.pmid29246041
dc.identifier.urihttps://hdl.handle.net/2445/123379
dc.language.isoeng
dc.publisherAmerican Institute of Physics
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1063/1.4996847
dc.relation.ispartofJournal of Chemical Physics, 2017, vol. 147, num. 22, p. 224102-1-224102-9
dc.relation.urihttps://doi.org/10.1063/1.4996847
dc.rights(c) American Institute of Physics , 2017
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Física de la Matèria Condensada)
dc.subject.classificationEntropia
dc.subject.classificationDistribució de Gauss
dc.subject.otherEntropy
dc.subject.otherGaussian distribution
dc.titleTesting the mutual information expansion of entropy with multivariate Gaussian distributions
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
675833.pdf
Mida:
6.62 MB
Format:
Adobe Portable Document Format