Evolution of the optimal catalytic systems for the oxidative dehydrogenation of ethane: The role of adsorption in the catalytic performance

dc.contributor.authorDe Arriba, Agustín
dc.contributor.authorSolsona, Benjamin
dc.contributor.authorDejoz, Ana M.
dc.contributor.authorConcepción, Patricia
dc.contributor.authorHoms Martí, Narcís
dc.contributor.authorRamírez de la Piscina, Pilar
dc.contributor.authorLópez Nieto, J.M.
dc.date.accessioned2024-02-08T18:05:57Z
dc.date.available2024-02-08T18:05:57Z
dc.date.issued2021-12-01
dc.date.updated2024-02-08T18:05:57Z
dc.description.abstractThree samples that correspond to the evolution of optimal catalytic systems for the oxidative dehydrogenation of ethane have been synthesized and compared in terms of catalytic behavior and adsorption properties: (i) vanadium oxide supported on alumina, (ii) Sn-promoted NiO, and (iii) multicomponent MoVTeNbO with the M1 structure. The main difference in catalytic performance lies in the extent of the overoxidation of the ethylene formed, following the order VOx/Al2O3 > NiSnOx > MoVTeNb-M1. Accordingly, the selectivity to ethylene at medium and high ethane conversion follows the order MoVTeNb-M1 > NiSnOx > VOx/Al2O3. These results are confirmed by the relative reaction rates observed for the oxidation of ethane and the oxidation of ethylene. Microcalorimetry studies indicate that the heat of adsorption of both ethane and ethylene is the highest in the most selective MoVTeNb-M1 sample. Thus, the low olefin decomposition in the MoVTeNb-M1 catalyst is not due to weaker adsorption of ethylene but to the reduced ability of its active sites to activate ethylene. The same conclusion regarding the MoVTeNb-M1 catalyst can be drawn by FT-IR of adsorbed ethylene. On the other hand, NiSnOx active sites present a high overoxidation ability, as demonstrated by the notorious formation of oxygenated species, precursors of COx. However, the ethylene decomposition is rather mild because of the existence of many free Lewis sites not involved in the overoxidation reaction. In contrast, in the case of the VOx/Al2O3 catalyst, almost all active sites are involved in the oxidation path, so that the olefins decompose readily.
dc.format.extent13 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec720421
dc.identifier.issn0021-9517
dc.identifier.urihttps://hdl.handle.net/2445/207337
dc.language.isoeng
dc.publisherAcademic Press, Elsevier
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1016/j.jcat.2021.07.015
dc.relation.ispartofJournal of Catalysis, 2021, vol. 408, p. 400
dc.relation.urihttps://doi.org/10.1016/j.jcat.2021.07.015
dc.rightscc-by-nc-nd (c) De Arriba, Agustín et al., 2021
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourceArticles publicats en revistes (Química Inorgànica i Orgànica)
dc.subject.classificationEtilè
dc.subject.classificationOxidació
dc.subject.classificationAdsorció
dc.subject.otherEthylene
dc.subject.otherOxidation
dc.subject.otherAdsorption
dc.titleEvolution of the optimal catalytic systems for the oxidative dehydrogenation of ethane: The role of adsorption in the catalytic performance
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
247587.pdf
Mida:
1.09 MB
Format:
Adobe Portable Document Format