Non-Crossing Dual Neural Network: Joint Value at Risk and Conditional Tail Expectation estimations with non-crossing conditions

dc.contributor.authorVidal-Llana, Xenxo
dc.contributor.authorSalort Sánchez, Carlos
dc.contributor.authorCoia, Vincenzo
dc.contributor.authorGuillén, Montserrat
dc.date.accessioned2022-11-04T13:10:06Z
dc.date.available2022-11-04T13:10:06Z
dc.date.issued2022
dc.description.abstractWhen datasets present long conditional tails on their response variables, algorithms based on Quantile Regression have been widely used to assess extreme quantile behaviors. Value at Risk (VaR) and Conditional Tail Expectation (CTE) allow the evaluation of extreme events to be easily interpretable. The state-of-the-art methodologies to estimate VaR and CTE controlled by covariates are mainly based on linear quantile regression, and usually do not have in consideration non-crossing conditions across VaRs and their associated CTEs. We implement a non-crossing neural network that estimates both statistics simultaneously, for several quantile levels and ensuring a list of non-crossing conditions. We illustrate our method with a household energy consumption dataset from 2015 for quantile levels 0.9, 0.925, 0.95, 0.975 and 0.99, and show its improvements against a Monotone Composite Quantile Regression Neural Network approximation.ca
dc.format.extent22 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/190480
dc.language.isoengca
dc.publisherUniversitat de Barcelona. Facultat d'Economia i Empresaca
dc.relation.isformatofReproducció del document publicat a: http://www.ub.edu/irea/working_papers/2022/202215.pdf
dc.relation.ispartofIREA – Working Papers, 2022, IR22/15
dc.relation.ispartofseries[WP E-IR22/15]ca
dc.rightscc-by-nc-nd, (c) Vidal-Llana et al., 2022
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceDocuments de treball (Institut de Recerca en Economia Aplicada Regional i Pública (IREA))
dc.subject.classificationXarxes neuronals (Informàtica)
dc.subject.classificationAvaluació del risc
dc.subject.classificationAnàlisi de regressió
dc.subject.otherNeural networks (Computer science)
dc.subject.otherRisk assessment
dc.subject.otherRegression analysis
dc.titleNon-Crossing Dual Neural Network: Joint Value at Risk and Conditional Tail Expectation estimations with non-crossing conditionsca
dc.typeinfo:eu-repo/semantics/workingPaperca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
IR22_015_Vidal Llana et al.pdf
Mida:
1.92 MB
Format:
Adobe Portable Document Format
Descripció: