Lorentz-Shimogaki and Boyd theorems for weighted Lorentz spaces
| dc.contributor.author | Agora, Elona | |
| dc.contributor.author | Antezana, Jorge | |
| dc.contributor.author | Carro Rossell, María Jesús | |
| dc.contributor.author | Soria de Diego, F. Javier | |
| dc.date.accessioned | 2018-10-01T08:39:39Z | |
| dc.date.available | 2018-10-01T08:39:39Z | |
| dc.date.issued | 2013-10-15 | |
| dc.date.updated | 2018-10-01T08:39:39Z | |
| dc.description.abstract | We prove the Lorentz-Shimogaki and Boyd theorems for the spaces $\Lambda^{p}_{u}(w)$. As a consequence, we give the complete characterization of the strong boundedness of $H$ on these spaces in terms of some geometric conditions on the weights $u$ and $w$, whenever $p > 1$. For these values of $p$, we also give the complete solution of the weak-type boundedness of the Hardy-Littlewood operator on $\Lambda^{p}_{u}(w)$. | |
| dc.format.extent | 16 p. | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.idgrec | 627554 | |
| dc.identifier.issn | 0024-6107 | |
| dc.identifier.uri | https://hdl.handle.net/2445/124948 | |
| dc.language.iso | eng | |
| dc.publisher | London Mathematical Society | |
| dc.relation.isformatof | Versió postprint del document publicat a: https://doi.org/10.1112/jlms/jdt063 | |
| dc.relation.ispartof | Journal of the London Mathematical Society-Second Series, 2013, vol. 89, num. 2, p. 321-336 | |
| dc.relation.uri | https://doi.org/10.1112/jlms/jdt063 | |
| dc.rights | (c) London Mathematical Society, 2013 | |
| dc.rights.accessRights | info:eu-repo/semantics/openAccess | |
| dc.source | Articles publicats en revistes (Matemàtiques i Informàtica) | |
| dc.subject.classification | Desigualtats (Matemàtica) | |
| dc.subject.classification | Anàlisi harmònica | |
| dc.subject.other | Inequalities (Mathematics) | |
| dc.subject.other | Harmonic analysis | |
| dc.title | Lorentz-Shimogaki and Boyd theorems for weighted Lorentz spaces | |
| dc.type | info:eu-repo/semantics/article | |
| dc.type | info:eu-repo/semantics/acceptedVersion |
Fitxers
Paquet original
1 - 1 de 1