Classificació de sentiments a Twitter

dc.contributor.advisorUrruticoechea, Eduardo
dc.contributor.authorPlanes Vivancos, Ricard
dc.date.accessioned2022-01-27T08:21:17Z
dc.date.available2022-01-27T08:21:17Z
dc.date.issued2021-06-19
dc.descriptionTreballs Finals de Grau d'Enginyeria Informàtica, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2021, Director: Eduardo Urruticoecheaca
dc.description.abstract[en] The aim of this project is to implement an unsupervised, fast and low-cost machine learning algorithm capable of identifying the sentiment conveyed by each tweet from a set of tweets in order to calculate the percentage of those positive and negative. To do this, we will also create the Dataset of tweets to classify with which the algorithm will be trained. This project intends to be useful to those companies that during an advertising campaign are looking for a quick first analysis of the catalan-speaking users’ acceptance on Twitter.ca
dc.format.extent45 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/182700
dc.language.isocatca
dc.rightsmemòria: cc-nc-nd (c) Ricard Planes Vivancos, 2021
dc.rightscodi: GPL (c) Ricard Planes Vivancos, 2021
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.rights.urihttp://www.gnu.org/licenses/gpl-3.0.ca.html*
dc.sourceTreballs Finals de Grau (TFG) - Enginyeria Informàtica
dc.subject.classificationXarxes socialsca
dc.subject.classificationAprenentatge automàticca
dc.subject.classificationProgramarica
dc.subject.classificationTreballs de fi de grauca
dc.subject.classificationSistemes classificadors (Intel·ligència artificial)ca
dc.subject.classificationAlgorismes computacionalsca
dc.subject.classificationReputació en líniaca
dc.subject.classificationEmocionsca
dc.subject.otherSocial networksen
dc.subject.otherMachine learningen
dc.subject.otherComputer softwareen
dc.subject.otherLearning classifier systemsen
dc.subject.otherComputer algorithmsen
dc.subject.otherBachelor's thesesen
dc.subject.otherReputation managementen
dc.subject.otherEmotionsen
dc.titleClassificació de sentiments a Twitterca
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 2 de 2
Carregant...
Miniatura
Nom:
codi.zip
Mida:
250.16 MB
Format:
ZIP file
Descripció:
Codi font
Carregant...
Miniatura
Nom:
tfg_ricard_planes_vivancos.pdf
Mida:
1.25 MB
Format:
Adobe Portable Document Format
Descripció:
Memòria