Carregant...
Tipus de document
Treball de fi de màsterData de publicació
Llicència de publicació
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/223177
Exploring Academic Relationships with UMAP: Dimensionality Reduction and Visualization of Topics and Authors in OpenAlex
Títol de la revista
Autors
Director/Tutor
ISSN de la revista
Títol del volum
Recurs relacionat
Resum
This thesis applies Uniform Manifold Approximation and Projection (UMAP) to analyse and visualize research works from the OpenAlex database. By using various embedding methods (including transformer-based models and hierarchical topic encodings) the study demonstrates that UMAP projections can effectively capture
meaningful structures in the data, revealing relationships among research areas and institutions. Results show that capturing complex topic relationships across multiple domains is a challenging task. Nevertheless, the visualizations reveal significant thematic clusters and author groupings that align with our data analysis. Quan-
titative evaluation using clustering metrics, such as the silhouette score, confirms the agreement between visual patterns and semantic embeddings. We also show the impact of UMAP hyperparameters on balancing local and global data structure preservation, which influences visualization clarity and interpretability. The resulting interactive, zoomable visual maps provide researchers with a powerful tool to explore and understand the organization of scientific knowledge.
Descripció
Treballs finals del Màster de Fonaments de Ciència de Dades, Facultat de matemàtiques, Universitat de Barcelona. Any: 2025. Tutor: Dimitri Marinelli i Albert Díaz Guilera
Matèries (anglès)
Citació
Citació
GARCÍA ROMO, Alba. Exploring Academic Relationships with UMAP: Dimensionality Reduction and Visualization of Topics and Authors in OpenAlex. [consulta: 21 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/223177]