Exploring Academic Relationships with UMAP: Dimensionality Reduction and Visualization of Topics and Authors in OpenAlex

dc.contributor.advisorMarinelli, Dimitri
dc.contributor.authorGarcía Romo, Alba
dc.date.accessioned2025-09-16T09:19:54Z
dc.date.available2025-09-16T09:19:54Z
dc.date.issued2025-06-30
dc.descriptionTreballs finals del Màster de Fonaments de Ciència de Dades, Facultat de matemàtiques, Universitat de Barcelona. Any: 2025. Tutor: Dimitri Marinelli i Albert Díaz Guileraca
dc.description.abstractThis thesis applies Uniform Manifold Approximation and Projection (UMAP) to analyse and visualize research works from the OpenAlex database. By using various embedding methods (including transformer-based models and hierarchical topic encodings) the study demonstrates that UMAP projections can effectively capture meaningful structures in the data, revealing relationships among research areas and institutions. Results show that capturing complex topic relationships across multiple domains is a challenging task. Nevertheless, the visualizations reveal significant thematic clusters and author groupings that align with our data analysis. Quan- titative evaluation using clustering metrics, such as the silhouette score, confirms the agreement between visual patterns and semantic embeddings. We also show the impact of UMAP hyperparameters on balancing local and global data structure preservation, which influences visualization clarity and interpretability. The resulting interactive, zoomable visual maps provide researchers with a powerful tool to explore and understand the organization of scientific knowledge.ca
dc.format.extent54 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/223177
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Alba García Romo, 2025
dc.rightscodi: GPL (c) Alba García Romo, 2025
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.rights.urihttp://www.gnu.org/licenses/gpl-3.0.ca.html*
dc.sourceMàster Oficial - Fonaments de la Ciència de Dades
dc.subject.classificationVisualització de la informació
dc.subject.classificationLiteratura científica
dc.subject.classificationAlgorismes computacionals
dc.subject.classificationTreballs de fi de màster
dc.subject.otherInformation visualization
dc.subject.otherScientific literature
dc.subject.otherComputer algorithms
dc.subject.otherMaster's thesis
dc.titleExploring Academic Relationships with UMAP: Dimensionality Reduction and Visualization of Topics and Authors in OpenAlexca
dc.typeinfo:eu-repo/semantics/masterThesisca

Fitxers

Paquet original

Mostrant 1 - 2 de 2
Carregant...
Miniatura
Nom:
Delivery-Exploring-Academic-Relationships-with-UMAP-and-OpenAlex.zip
Mida:
38.33 MB
Format:
ZIP file
Descripció:
Codi font
Carregant...
Miniatura
Nom:
TFM_García_Romo_Alba.pdf
Mida:
10.86 MB
Format:
Adobe Portable Document Format
Descripció:
Memòria