Sèries temporals amb memòria llarga: models ARFIMA

dc.contributor.advisorVives i Santa Eulàlia, Josep, 1963-
dc.contributor.authorMuñoz Martínez, Sergio Gabriel
dc.date.accessioned2023-10-25T09:05:27Z
dc.date.available2023-10-25T09:05:27Z
dc.date.issued2023-06-12
dc.descriptionTreballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2023 , Director: Josep Vives i Santa Eulàliaca
dc.description.abstract[en] Time series analysis plays a vital role in understanding various phenomena in a wide variety of fields. Over the years, more complex statistical models have been developed that allow us to analyze time series in a more accurate way. This project studies in depth one of them: the ARFIMA models. These models are very useful for examining long memory time series. The main purpose of this project is to provide a comprehensive analysis of these models, including their theoretical foundations, estimation methods and a practical implementation. In particular, the $R$ programming language is used to evaluate the possibility of modeling the time series that shows the air quality of Barcelona between 2017 and 2019 using an ARFIMA model.ca
dc.format.extent59 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/203142
dc.language.isocatca
dc.rightscc-by-nc-nd (c) Sergio Muñoz Martı́nez, 2023
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceTreballs Finals de Grau (TFG) - Matemàtiques
dc.subject.classificationProcessos estocàsticsca
dc.subject.classificationAnàlisi de sèries temporals
dc.subject.classificationModels lineals (Estadística)ca
dc.subject.classificationEstadística matemàticaca
dc.subject.classificationTreballs de fi de grauca
dc.subject.otherStochastic processesen
dc.subject.otherTime-series analysis
dc.subject.otherLinear models (Statistics)en
dc.subject.otherMathematical statisticsen
dc.subject.otherBachelor's thesesen
dc.titleSèries temporals amb memòria llarga: models ARFIMAca
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
tfg_munoz_martinez_sergio.pdf
Mida:
1.53 MB
Format:
Adobe Portable Document Format
Descripció:
Memòria