MALrisk: a machine-learning-based tool to predict imported malaria in returned travellers with fever

dc.contributor.authorBalerdi Sarasola, Leire
dc.contributor.authorFleitas, Pedro E.
dc.contributor.authorBottieau, Emmanuel
dc.contributor.authorGenton, Blaise
dc.contributor.authorPetrone, Paula
dc.contributor.authorMuñoz Gutiérrez, José
dc.contributor.authorCamprubí, Daniel
dc.date.accessioned2024-09-11T08:46:13Z
dc.date.available2025-04-04T05:10:11Z
dc.date.issued2024-04-05
dc.date.updated2024-09-11T08:46:13Z
dc.description.abstractBackground: Early diagnosis is key to reducing the morbi-mortality associated with P. falciparum malaria among international travellers. However, access to microbiological tests can be challenging for some healthcare settings. Artificial Intelligence could improve the management of febrile travellers. Methods: Data from a multicentric prospective study of febrile travellers was obtained to build a machine-learning model to predict malaria cases among travellers presenting with fever. Demographic characteristics, clinical and laboratory variables were leveraged as features. Eleven machine-learning classification models were evaluated by 50-fold cross-validation in a Training set. Then, the model with the best performance, defined by the Area Under the Curve (AUC), was chosen for parameter optimization and evaluation in the Test set. Finally, a reduced model was elaborated with those features that contributed most to the model. Results: Out of eleven machine-learning models, XGBoost presented the best performance (mean AUC of 0.98 and a mean F1 score of 0.78). A reduced model (MALrisk) was developed using only six features: Africa as a travel destination, platelet count, rash, respiratory symptoms, hyperbilirubinemia and chemoprophylaxis intake. MALrisk predicted malaria cases with 100% (95%CI 96-100) sensitivity and 72% (95%CI 68-75) specificity. Conclusions: The MALrisk can aid in the timely identification of malaria in non-endemic settings, allowing the initiation of empiric antimalarials and reinforcing the need for urgent transfer in healthcare facilities with no access to malaria diagnostic tests. This resource could be easily scalable to a digital application and could reduce the morbidity associated with late diagnosis.
dc.format.extent21 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec749938
dc.identifier.issn1195-1982
dc.identifier.urihttps://hdl.handle.net/2445/215091
dc.language.isoeng
dc.publisherOxford University Press
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1093/jtm/taae054
dc.relation.ispartofJournal of Travel Medicine, 2024
dc.relation.urihttps://doi.org/10.1093/jtm/taae054
dc.rights(c) International Society of Travel Medicine, 2024
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Medicina)
dc.subject.classificationMalària
dc.subject.classificationAprenentatge automàtic
dc.subject.classificationMedicina tropical
dc.subject.classificationViatges
dc.subject.otherMalaria
dc.subject.otherMachine learning
dc.subject.otherTropical medicine
dc.subject.otherTravels
dc.titleMALrisk: a machine-learning-based tool to predict imported malaria in returned travellers with fever
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
864824.pdf
Mida:
1.14 MB
Format:
Adobe Portable Document Format