RTP801 regulates motor cortex synaptic transmission and learning

dc.contributor.authorPérez Sisqués, Leticia
dc.contributor.authorMartín Flores, Núria
dc.contributor.authorMasana Nadal, Mercè
dc.contributor.authorSolana Balaguer, Júlia
dc.contributor.authorLlobet, Arnau
dc.contributor.authorRomaní Aumedes, Joan
dc.contributor.authorCanal de la Iglesia, Mercè
dc.contributor.authorCampoy Campos, Genís
dc.contributor.authorGarcía-García, Esther
dc.contributor.authorSánchez Fernández, Núria
dc.contributor.authorFernández, Sara (Fernández García)
dc.contributor.authorGilbert, James P.
dc.contributor.authorRodríguez Allué, Manuel José
dc.contributor.authorMan, Heng-Ye
dc.contributor.authorFeinstein, Elena
dc.contributor.authorWilliamson, David L.
dc.contributor.authorSoto del Cerro, David
dc.contributor.authorGasull Casanova, Xavier
dc.contributor.authorAlberch i Vié, Jordi, 1959-
dc.contributor.authorMalagelada Grau, Cristina
dc.date.accessioned2021-05-21T15:33:43Z
dc.date.issued2021-05-11
dc.date.updated2021-05-21T15:33:43Z
dc.description.abstractBackground: RTP801/REDD1 is a stress-regulated protein whose upregulation is necessary and sufficient to trigger neuronal death in in vitro and in vivo models of Parkinson's and Huntington's diseases and is up regulated in compromised neurons in human postmortem brains of both neurodegenerative disorders. Indeed, in both Parkinson's and Huntington's disease mouse models, RTP801 knockdown alleviates motor-learning deficits. Results: We investigated the physiological role of RTP801 in neuronal plasticity and we found RTP801 in rat, mouse and human synapses. The absence of RTP801 enhanced excitatory synaptic transmission in both neuronal cultures and brain slices from RTP801 knock-out (KO) mice. Indeed, RTP801 KO mice showed improved motor learning, which correlated with lower spine density but increased basal filopodia and mushroom spines in the motor cortex layer V. This paralleled with higher levels of synaptosomal GluA1 and TrkB receptors in homogenates derived from KO mice motor cortex, proteins that are associated with synaptic strengthening.Conclusions: Altogether, these results indicate that RTP801 has an important role modulating neuronal plasticity and motor learning. They will help to understand its role in neurodegenerative disorders where RTP801 levels are detrimentally upregulated.
dc.format.extent15 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec712180
dc.identifier.issn0014-4886
dc.identifier.pmid33984337
dc.identifier.urihttps://hdl.handle.net/2445/177519
dc.language.isoeng
dc.publisherElsevier
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1016/j.expneurol.2021.113755
dc.relation.ispartofExperimental Neurology, 2021, vol. 342, p. 113755
dc.relation.urihttps://doi.org/10.1016/j.expneurol.2021.113755
dc.rightscc-by-nc-nd (c) Elsevier, 2021
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourceArticles publicats en revistes (Biomedicina)
dc.subject.classificationMalaltia de Parkinson
dc.subject.classificationCorea de Huntington
dc.subject.classificationModels animals en la investigació
dc.subject.otherParkinson's disease
dc.subject.otherHuntington's chorea
dc.subject.otherAnimal models in research
dc.titleRTP801 regulates motor cortex synaptic transmission and learning
dc.typeinfo:eu-repo/semantics/article

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
712180.pdf
Mida:
11.9 MB
Format:
Adobe Portable Document Format