Two new series of principles in the interpretability logic of all reasonable arithmetical theories

dc.contributor.authorGoris, Evan
dc.contributor.authorJoosten, Joost J.
dc.date.accessioned2020-05-21T14:03:21Z
dc.date.available2020-05-21T14:03:21Z
dc.date.issued2020-03
dc.date.updated2020-05-21T14:03:21Z
dc.description.abstractThe provability logic of a theory T captures the structural behavior of formalized provability in T as provable in T itself. Like provability, one can formalize the notion of relative interpretability giving rise to interpretability logics. Where provability logics are the same for all moderately sound theories of some minimal strength, interpretability logics do show variations. The logic IL(All) is defined as the collection of modal principles that are provable in any moderately sound theory of some minimal strength. In this paper we raise the previously known lower bound of IL(All) by exhibiting two series of principles which are shown to be provable in any such theory. Moreover, we compute the collection of frame conditions for both series.
dc.format.extent25 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec700298
dc.identifier.issn0022-4812
dc.identifier.urihttps://hdl.handle.net/2445/161941
dc.language.isoeng
dc.publisherAssociation for Symbolic Logic.
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1017/jsl.2019.90
dc.relation.ispartofJournal of Symbolic Logic, 2020, vol. 85, num. 1, p. 1-25
dc.relation.urihttps://doi.org/10.1017/jsl.2019.90
dc.rights(c) Association for Symbolic Logic., 2020
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Filosofia)
dc.subject.classificationLògica matemàtica
dc.subject.classificationAritmètica
dc.subject.otherMathematical logic
dc.subject.otherArithmetic
dc.titleTwo new series of principles in the interpretability logic of all reasonable arithmetical theories
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
700298.pdf
Mida:
323.11 KB
Format:
Adobe Portable Document Format