Active Learning strategies for WCE images classification

dc.contributor.advisorSeguí Mesquida, Santi
dc.contributor.advisorGilabert Roca, Pere
dc.contributor.authorBardají Serra, Sara
dc.date.accessioned2024-06-12T07:26:52Z
dc.date.available2024-06-12T07:26:52Z
dc.date.issued2024-01-16
dc.descriptionTreballs finals del Màster de Fonaments de Ciència de Dades, Facultat de matemàtiques, Universitat de Barcelona. Curs: 2023-2024. Tutor: Santi Seguí Mesquida i Pere Gilabert Rocaca
dc.description.abstract[en] Medical imaging, particularly through Wireless Capsule Endoscopy (WCE), has revolutionized gastrointestinal health by capturing intricate details of the digestive tract, with a focus on identifying potential precursors like polyps. However, labeling vast and continuous WCE videos for machine learning poses significant challenges due to its resource-intensive nature. This research explores the realm of active learning (AL) to optimize WCE image classification, aiming to enhance model performance with minimal labeled data. Utilizing WCE videos, we established an AL framework that at every cycles selects a video to query for labels. Our study implemented various sampling strategies, categorized into uncertainty-based and diversity-based approaches. Initial outcomes with uncertainty-based methods aligned closely with random sampling, prompting a shift towards diversity-based strategies. Notably, the cover strategy, especially with its autoencoder variant, and the clustering strategies, both diversity-based, exhibited promising results. Despite these advancements, discerning the superior strategy between cover with autoencoder and clustering necessitates further exploration. This study shows the potential of AL in WCE image classification while highlighting areas for future investigation.ca
dc.format.extent42 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/212901
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Sara Bardají Serra, 2024
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceMàster Oficial - Fonaments de la Ciència de Dades
dc.subject.classificationCàpsula endoscòpica
dc.subject.classificationDiagnòstic per la imatge
dc.subject.classificationSistemes classificadors (Intel·ligència artificial)
dc.subject.classificationTreballs de fi de màster
dc.subject.classificationAprenentatge automàticca
dc.subject.otherCapsule endoscopy
dc.subject.otherDiagnostic imaging
dc.subject.otherLearning classifier systems
dc.subject.otherMaster's thesis
dc.subject.otherMachine learningeng
dc.titleActive Learning strategies for WCE images classificationca
dc.typeinfo:eu-repo/semantics/masterThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
tfm_bardaji_serra_sara.pdf
Mida:
9.69 MB
Format:
Adobe Portable Document Format
Descripció:
Memòria