Carregant...
Miniatura

Tipus de document

Article

Versió

Versió publicada

Data de publicació

Llicència de publicació

cc-by (c) Klatzow, James et al., 2022
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/194747

µMatch: 3D shape correspondence for biological image data

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

Modern microscopy technologies allow imaging biological objects in 3D over a wide range of spatial and temporal scales, opening the way for a quantitative assessment of morphology. However, establishing a correspondence between objects to be compared, a first necessary step of most shape analysis workflows, remains challenging for soft-tissue objects without striking features allowing them to be landmarked. To address this issue, we introduce the μMatch 3D shape correspondence pipeline. μMatch implements a state-of-the-art correspondence algorithm initially developed for computer graphics and packages it in a streamlined pipeline including tools to carry out all steps from input data pre-processing to classical shape analysis routines. Importantly, μMatch does not require any landmarks on the object surface and establishes correspondence in a fully automated manner. Our open-source method is implemented in Python and can be used to process collections of objects described as triangular meshes. We quantitatively assess the validity of μMatch relying on a well-known benchmark dataset and further demonstrate its reliability by reproducing published results previously obtained through manual landmarking.

Citació

Citació

KLATZOW, James, DALMASSO, Giovanni, MARTÍNEZ ABADÍAS, Neus, SHARPE, James, UHLMANN, Virginie. µMatch: 3D shape correspondence for biological image data. _Frontiers in Computer Science_. 2022. Vol. 4. [consulta: 21 de gener de 2026]. ISSN: 2624-9898. [Disponible a: https://hdl.handle.net/2445/194747]

Exportar metadades

JSON - METS

Compartir registre