µMatch: 3D shape correspondence for biological image data
| dc.contributor.author | Klatzow, James | |
| dc.contributor.author | Dalmasso, Giovanni | |
| dc.contributor.author | Martínez Abadías, Neus, 1978- | |
| dc.contributor.author | Sharpe, James | |
| dc.contributor.author | Uhlmann, Virginie | |
| dc.date.accessioned | 2023-03-07T09:52:12Z | |
| dc.date.available | 2023-03-07T09:52:12Z | |
| dc.date.issued | 2022-01-10 | |
| dc.date.updated | 2023-03-07T09:52:12Z | |
| dc.description.abstract | Modern microscopy technologies allow imaging biological objects in 3D over a wide range of spatial and temporal scales, opening the way for a quantitative assessment of morphology. However, establishing a correspondence between objects to be compared, a first necessary step of most shape analysis workflows, remains challenging for soft-tissue objects without striking features allowing them to be landmarked. To address this issue, we introduce the μMatch 3D shape correspondence pipeline. μMatch implements a state-of-the-art correspondence algorithm initially developed for computer graphics and packages it in a streamlined pipeline including tools to carry out all steps from input data pre-processing to classical shape analysis routines. Importantly, μMatch does not require any landmarks on the object surface and establishes correspondence in a fully automated manner. Our open-source method is implemented in Python and can be used to process collections of objects described as triangular meshes. We quantitatively assess the validity of μMatch relying on a well-known benchmark dataset and further demonstrate its reliability by reproducing published results previously obtained through manual landmarking. | |
| dc.format.extent | 16 p. | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.idgrec | 717380 | |
| dc.identifier.issn | 2624-9898 | |
| dc.identifier.uri | https://hdl.handle.net/2445/194747 | |
| dc.language.iso | eng | |
| dc.publisher | Frontiers Media | |
| dc.relation.isformatof | Reproducció del document publicat a: https://doi.org/10.3389/fcomp.2022.777615 | |
| dc.relation.ispartof | Frontiers in Computer Science, 2022, vol. 4 | |
| dc.relation.uri | https://doi.org/10.3389/fcomp.2022.777615 | |
| dc.rights | cc-by (c) Klatzow, James et al., 2022 | |
| dc.rights.accessRights | info:eu-repo/semantics/openAccess | |
| dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
| dc.source | Articles publicats en revistes (Biologia Evolutiva, Ecologia i Ciències Ambientals) | |
| dc.subject.classification | Visualització tridimensional | |
| dc.subject.classification | Impressió 3D | |
| dc.subject.classification | Python (Llenguatge de programació) | |
| dc.subject.classification | Biotecnologia | |
| dc.subject.other | Three-dimensional display systems | |
| dc.subject.other | Three-dimensional printing | |
| dc.subject.other | Python (Computer program language) | |
| dc.subject.other | Biotechnology | |
| dc.title | µMatch: 3D shape correspondence for biological image data | |
| dc.type | info:eu-repo/semantics/article | |
| dc.type | info:eu-repo/semantics/publishedVersion |
Fitxers
Paquet original
1 - 1 de 1