Genome editing in animals with minimal PAM CRISPR-Cas9 enzymes

dc.contributor.authorVicencio, Jeremy
dc.contributor.authorSánchez Bolaños, Carlos
dc.contributor.authorMoreno Sánchez, Ismael
dc.contributor.authorBrena, David
dc.contributor.authorVejnar, Charles E.
dc.contributor.authorKukhtar, Dmytro
dc.contributor.authorRuiz López, Miguel
dc.contributor.authorCots Ponjoan, Mariona
dc.contributor.authorRubio, Alejandro
dc.contributor.authorRodrigo Melero, Natalia
dc.contributor.authorCrespo Cuadrado, Jesús
dc.contributor.authorCarolis, Carlo
dc.contributor.authorPérez Pulido, Antonio J.
dc.contributor.authorGiráldez, Antonio J.
dc.contributor.authorKleinstiver, Benjamin P.
dc.contributor.authorCerón Madrigal, Julián
dc.contributor.authorMoreno Mateos, Miguel A.
dc.date.accessioned2022-05-27T08:03:40Z
dc.date.available2022-05-27T08:03:40Z
dc.date.issued2022-05-12
dc.date.updated2022-05-26T10:25:05Z
dc.description.abstractPAM requirement is a constraint for genome editing but this has been circumvented by engineered Cas9 nucleases as SpG and SpRY recognizing minimal PAM sequences. Here, the authors validate and optimize SpG and SpRY in vivo expanding the targeting landscape in animals. The requirement for Cas nucleases to recognize a specific PAM is a major restriction for genome editing. SpCas9 variants SpG and SpRY, recognizing NGN and NRN PAMs, respectively, have contributed to increase the number of editable genomic sites in cell cultures and plants. However, their use has not been demonstrated in animals. Here we study the nuclease activity of SpG and SpRY by targeting 40 sites in zebrafish and C. elegans. Delivered as mRNA-gRNA or ribonucleoprotein (RNP) complexes, SpG and SpRY were able to induce mutations in vivo, albeit at a lower rate than SpCas9 in equivalent formulations. This lower activity was overcome by optimizing mRNA-gRNA or RNP concentration, leading to mutagenesis at regions inaccessible to SpCas9. We also found that the CRISPRscan algorithm could help to predict SpG and SpRY targets with high activity in vivo. Finally, we applied SpG and SpRY to generate knock-ins by homology-directed repair. Altogether, our results expand the CRISPR-Cas targeting genomic landscape in animals.
dc.format.extent13 p.
dc.format.mimetypeapplication/pdf
dc.identifier.issn2041-1723
dc.identifier.pmid35552388
dc.identifier.urihttps://hdl.handle.net/2445/186096
dc.language.isoeng
dc.publisherSpringer Science and Business Media
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1038/s41467-022-30228-4
dc.relation.ispartofNature Communications, 2022, vol. 13, num. 1
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/713673/EU//INPhINIT
dc.relation.urihttps://doi.org/10.1038/s41467-022-30228-4
dc.rightscc by (c) Vicencio, Jeremy et al, 2022
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.sourceArticles publicats en revistes (Institut d'lnvestigació Biomèdica de Bellvitge (IDIBELL))
dc.subject.classificationRNA
dc.subject.classificationMetabolisme
dc.subject.otherRNA
dc.subject.otherMetabolism
dc.titleGenome editing in animals with minimal PAM CRISPR-Cas9 enzymes
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
s41467-022-30228-4.pdf
Mida:
3.17 MB
Format:
Adobe Portable Document Format