Carregant...
Miniatura

Tipus de document

Article

Versió

Versió acceptada

Data de publicació

Llicència de publicació

cc-by-nc-nd (c) Elsevier B.V., 2020
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/170998

Economic forecasting with evolved confidence indicators

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

We present a machine-learning method for sentiment indicators construction that allows an automated variable selection procedure. By means of genetic programming, we generate country-specific business and consumer confidence indicators for thirteen European economies. The algorithm finds non-linear combinations of qualitative survey expectations that yield estimates of the expected rate of economic growth. Firms' production expectations and consumers' expectations to spend on home improvements are the most frequently selected variables - both lagged and contemporaneous. To assess the performance of the proposed approach, we have designed an out-of-sample iterative predictive experiment. We found that forecasts generated with the evolved indicators outperform those obtained with time series models. These results show the potential of the methodology as a predictive tool. Furthermore, the proposed indicators are easy to implement and help to monitor the evolution of the economy, both from demand and supply sides.

Citació

Citació

CLAVERÍA GONZÁLEZ, Óscar, MONTE MORENO, Enric, TORRA PORRAS, Salvador. Economic forecasting with evolved confidence indicators. _Economic Modelling_. 2020. Vol. 93, núm. December, pàgs. 576-585. [consulta: 1 de febrer de 2026]. ISSN: 0264-9993. [Disponible a: https://hdl.handle.net/2445/170998]

Exportar metadades

JSON - METS

Compartir registre