Virgin olive oil volatile fingerprint and chemometrics: Towards an instrumental screening tool to grade the sensory quality

dc.contributor.authorQuintanilla-Casas, Beatriz
dc.contributor.authorBustamante Alonso, Julen
dc.contributor.authorGuardiola Ibarz, Francesc
dc.contributor.authorGarcía González, Diego Luís
dc.contributor.authorBarbieri, Sara
dc.contributor.authorBendini, Alessandra
dc.contributor.authorGallina Toschi, Tullia
dc.contributor.authorVichi, S. (Stefania)
dc.contributor.authorTres Oliver, Alba
dc.date.accessioned2020-05-07T16:39:53Z
dc.date.available2020-12-07T06:10:19Z
dc.date.issued2020
dc.date.updated2020-05-07T16:39:54Z
dc.description.abstractSensory quality, assessed following a standardized method, is one of the parameters defining the commercial category of virgin olive oil. Considering the difficulties linked to the organoleptic evaluation, especially the high number of samples to be assessed, setting up instrumental methods to support sensory panels becomes a need for the olive oil sector. Volatile fingerprint by Headspace Solid Phase Microextraction-Gas Chromatography-Mass Spectrometry can be an excellent fit-for-purpose tool as the volatile fraction is responsible for virgin olive oil sensory attributes. A fingerprinting approach was applied to the volatile profile of 176 virgin olive oils pre- viously graded by six official sensory panels. The classification strategy consisted in two sequential Partial Least Square-Discriminant Analysis models built with the aligned chromatograms: the first discriminated extra virgin and non-extra virgin samples; the second classified the latter into virgin or lampante categories. Results were satisfactory in the cross-validation by leave 10%-out (97% of correct classification). For external validation, an uncertainty range was set for the prediction models to detect boundary samples, which would be further assessed by the sensory panels. By doing this, a considerable decrease of the panel workload (around 80%) was achieved, while maintaining a highly reliable classification of samples (error rate < 10%).
dc.format.extent8 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec695054
dc.identifier.issn0023-6438
dc.identifier.pmid32204346
dc.identifier.urihttps://hdl.handle.net/2445/159203
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1016/j.lwt.2019.108936
dc.relation.ispartofLWT Food Science and Technology, 2019, vol. 121, p. 108936
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/635690/EU//OLEUM
dc.relation.urihttps://doi.org/10.1016/j.lwt.2019.108936
dc.rightscc-by-nc-nd (c) Elsevier B.V., 2019
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es
dc.sourceArticles publicats en revistes (Nutrició, Ciències de l'Alimentació i Gastronomia)
dc.subject.classificationOli d'oliva
dc.subject.classificationCompostos orgànics volàtils
dc.subject.otherOlive oil
dc.subject.otherVolatile organic compounds
dc.titleVirgin olive oil volatile fingerprint and chemometrics: Towards an instrumental screening tool to grade the sensory quality
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
695054.pdf
Mida:
2.77 MB
Format:
Adobe Portable Document Format