Carregant...
Miniatura

Tipus de document

Part del llibre

Versió

Versió acceptada

Data de publicació

Tots els drets reservats

Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/117730

The appraisal of machine learning techniques for tourism demand forecasting [Capítol de llibre]

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Recurs relacionat

Resum

Machine learning (ML) methods are being increasingly used with forecasting purposes. This study assesses the predictive performance of several ML models in a multiple-input multiple-output (MIMO) setting that allows incorporating the cross-correlations between the inputs. We compare the forecast accuracy of a Gaussian process regression (GPR) model to that of different neural network architectures in a multi-step-ahead time series prediction experiment. We find that the radial basis function (RBF) network outperforms the GPR model, especially for long-term forecast horizons. As the memory of the models increases, the forecasting performance of the GPR improves, suggesting the convenience of designing a model selection criteria in order to estimate the optimal number of lags used for concatenation.

Citació

Citació

CLAVERÍA GONZÁLEZ, Óscar, MONTE MORENO, Enric, TORRA PORRAS, Salvador. The appraisal of machine learning techniques for tourism demand forecasting [Capítol de llibre]. _Capítol del llibre: “Machine Learning: Advances in Research and Applications”_. ISBN: 978-1-53612-570-2
Editors: Roger Inge and Jan Leif. Vol.  Nova Science Publishers, núm. 2017. [consulta: 9 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/117730]

Exportar metadades

JSON - METS

Compartir registre