The appraisal of machine learning techniques for tourism demand forecasting [Capítol de llibre]

dc.contributor.authorClavería González, Óscar
dc.contributor.authorMonte Moreno, Enric
dc.contributor.authorTorra Porras, Salvador
dc.date.accessioned2017-11-14T12:08:34Z
dc.date.available2017-11-14T12:08:34Z
dc.date.issued2017
dc.description.abstractMachine learning (ML) methods are being increasingly used with forecasting purposes. This study assesses the predictive performance of several ML models in a multiple-input multiple-output (MIMO) setting that allows incorporating the cross-correlations between the inputs. We compare the forecast accuracy of a Gaussian process regression (GPR) model to that of different neural network architectures in a multi-step-ahead time series prediction experiment. We find that the radial basis function (RBF) network outperforms the GPR model, especially for long-term forecast horizons. As the memory of the models increases, the forecasting performance of the GPR improves, suggesting the convenience of designing a model selection criteria in order to estimate the optimal number of lags used for concatenation.ca
dc.format.extent22 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec304795
dc.identifier.urihttps://hdl.handle.net/2445/117730
dc.language.isoengca
dc.publisherNova Science Publishers, Inc.
dc.relation.ispartofCapítol del llibre: “Machine Learning: Advances in Research and Applications”, ISBN: 978-1-53612-570-2 Editors: Roger Inge and Jan Leif, Nova Science Publishers, Inc. 2017. pp. 59-90
dc.rights(c) Nova Science Publishers, Inc., 2017
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.sourceLlibres / Capítols de llibre (Econometria, Estadística i Economia Aplicada)
dc.subject.classificationAprenentatge automàtic
dc.subject.classificationDistribució de Gauss
dc.subject.classificationAnàlisi de regressió
dc.subject.classificationPrevisió
dc.subject.otherMachine learning
dc.subject.otherGaussian distribution
dc.subject.otherRegression analysis
dc.subject.otherForecasting
dc.titleThe appraisal of machine learning techniques for tourism demand forecasting [Capítol de llibre]ca
dc.typeinfo:eu-repo/semantics/bookPartca
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
Book Machine Learning (2017) - Chapter 2 - pp 59-90 - postprint.pdf
Mida:
395.08 KB
Format:
Adobe Portable Document Format