Multipliers for entire functions and an interpolation problem of Beurling

dc.contributor.authorOrtega Cerdà, Joaquim
dc.contributor.authorSeip, Kristian
dc.date.accessioned2020-06-05T08:33:26Z
dc.date.available2020-06-05T08:33:26Z
dc.date.issued1999-03-10
dc.date.updated2020-06-05T08:33:26Z
dc.description.abstractWe characterize the interpolating sequences for the Bernstein space of entire functions of exponential type, in terms of a Beurling-type density condition and a Carleson-type separation condition. Our work extends a description previously given by Beurling in the case that the interpolating sequences are restricted to the real line. An essential role is played by a multiplier lemma, which permits us to link techniques from Hardy spaces with entire functions of exponential type. We finally present a characterization of the sampling sequences for the Bernstein space, also extending a density theorem of Beurling.
dc.format.extent16 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec148712
dc.identifier.issn0022-1236
dc.identifier.urihttps://hdl.handle.net/2445/164425
dc.language.isoeng
dc.publisherElsevier
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1006/jfan.1998.3357
dc.relation.ispartofJournal of Functional Analysis, 1999, vol. 162, num. 2, p. 400-415
dc.relation.urihttps://doi.org/10.1006/jfan.1998.3357
dc.rights(c) Elsevier, 1999
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationFuncions de variables complexes
dc.subject.classificationFuncions enteres
dc.subject.otherFunctions of complex variables
dc.subject.otherEntire functions
dc.titleMultipliers for entire functions and an interpolation problem of Beurling
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
148712.pdf
Mida:
315.04 KB
Format:
Adobe Portable Document Format