The geometry of the flex locus of a hypersurface

dc.contributor.authorBusé, Laurent
dc.contributor.authorD'Andrea, Carlos, 1973-
dc.contributor.authorSombra, Martín
dc.contributor.authorWeimann, Martin
dc.date.accessioned2020-07-14T06:52:07Z
dc.date.available2020-07-14T06:52:07Z
dc.date.issued2020-02-12
dc.date.updated2020-07-14T06:52:08Z
dc.description.abstractWe give a formula in terms of multidimensional resultants for an equation for the flex locus of a projective hypersurface, generalizing a classical result of Salmon for surfaces in $\mathbb{P}^{3}$. Using this formula, we compute the dimension of this flex locus, and an upper bound for the degree of its defining equations. We also show that, when the hypersurface is generic, this bound is reached, and that the generic flex line is unique and has the expected order of contact with the hypersurface.
dc.format.extent19 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec699320
dc.identifier.issn0030-8730
dc.identifier.urihttps://hdl.handle.net/2445/168517
dc.language.isoeng
dc.publisherMathematical Sciences Publishers (MSP)
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.2140/pjm.2020.304.419
dc.relation.ispartofPacific Journal of Mathematics, 2020, vol. 304, num. 2, p. 419-437
dc.relation.urihttps://doi.org/10.2140/pjm.2020.304.419
dc.rights(c) Mathematical Sciences Publishers (MSP), 2020
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationHipersuperfícies
dc.subject.classificationGeometria algebraica
dc.subject.classificationÀlgebra commutativa
dc.subject.otherHypersurfaces
dc.subject.otherAlgebraic geometry
dc.subject.otherCommutative algebra
dc.titleThe geometry of the flex locus of a hypersurface
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
699320.pdf
Mida:
361.71 KB
Format:
Adobe Portable Document Format