Multiple platform assessmant of the EGF dependent transcritpome by microarrays and deep TAG sequencing analysis

dc.contributor.authorLlorens Torres, Franc
dc.contributor.authorHummel, Manuela
dc.contributor.authorPastor Durán, Xavier
dc.contributor.authorFerrer, Anna
dc.contributor.authorPluvinet Ortega, Raquel
dc.contributor.authorVivancos, Ana
dc.contributor.authorCastillo, Ester
dc.contributor.authorIraola Guzmán, Susana
dc.contributor.authorMosquera, Ana M.
dc.contributor.authorGonzález Barca, Eva
dc.contributor.authorLozano Salvatella, Juan José
dc.contributor.authorIngham, Matthew
dc.contributor.authorDohm, Juliane C.
dc.contributor.authorNoguera, Marc
dc.contributor.authorKofler, Robert
dc.contributor.authorRío Fernández, José Antonio del
dc.contributor.authorBayés Colomer, Mònica
dc.contributor.authorHimmelbauer, Heinz
dc.contributor.authorSumoy, Lauro
dc.date.accessioned2013-04-30T14:00:16Z
dc.date.available2013-04-30T14:00:16Z
dc.date.issued2011
dc.date.updated2013-04-30T14:00:16Z
dc.description.abstractAbstract Background: Epidermal Growth Factor (EGF) is a key regulatory growth factor activating many processes relevant to normal development and disease, affecting cell proliferation and survival. Here we use a combined approach to study the EGF dependent transcriptome of HeLa cells by using multiple long oligonucleotide based microarray platforms (from Agilent, Operon, and Illumina) in combination with digital gene expression profiling (DGE) with the Illumina Genome Analyzer. Results: By applying a procedure for cross-platform data meta-analysis based on RankProd and GlobalAncova tests, we establish a well validated gene set with transcript levels altered after EGF treatment. We use this robust gene list to build higher order networks of gene interaction by interconnecting associated networks, supporting and extending the important role of the EGF signaling pathway in cancer. In addition, we find an entirely new set of genes previously unrelated to the currently accepted EGF associated cellular functions. Conclusions: We propose that the use of global genomic cross-validation derived from high content technologies (microarrays or deep sequencing) can be used to generate more reliable datasets. This approach should help to improve the confidence of downstream in silico functional inference analyses based on high content data.
dc.format.extent19 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec612826
dc.identifier.issn1471-2164
dc.identifier.urihttps://hdl.handle.net/2445/36432
dc.language.isoeng
dc.publisherBioMed Central
dc.relation.isformatofReproducció del document publicat a: http://www.biomedcentral.com/1471-2164/12/326
dc.relation.ispartofBmc Genomics, 2011, vol. 12, p. 326-330
dc.rightscc-by (c) Llorens, Franc et al., 2011
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es
dc.sourceArticles publicats en revistes (Biologia Cel·lular, Fisiologia i Immunologia)
dc.subject.classificationFactor de creixement epidèrmic
dc.subject.classificationGenètica humana
dc.subject.classificationMicroxips d'ADN
dc.subject.otherEpidermal growth factor
dc.subject.otherHuman genetics
dc.subject.otherDNA microarrays
dc.titleMultiple platform assessmant of the EGF dependent transcritpome by microarrays and deep TAG sequencing analysis
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
612826.pdf
Mida:
2.46 MB
Format:
Adobe Portable Document Format