Singular values and non-repelling cycles for entire transcendental maps

dc.contributor.authorBenini, Anna Miriam
dc.contributor.authorFagella Rabionet, Núria
dc.date.accessioned2020-12-03T10:19:51Z
dc.date.available2020-12-03T10:19:51Z
dc.date.issued2020-06-01
dc.date.updated2020-12-03T10:19:51Z
dc.description.abstractLet $f$ be a map with bounded set of singular values for which periodic dynamic rays exist and land. We prove that each non-repelling cycle is associated to a singular orbit which cannot accumulate on any other non-repelling cycle. When $f$ has finitely many singular values this implies a refinement of the Fatou-Shishikura inequality.
dc.format.extent16 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec683533
dc.identifier.issn0022-2518
dc.identifier.urihttps://hdl.handle.net/2445/172530
dc.language.isoeng
dc.publisherIndiana University
dc.relation.isformatofVersió preprint del document publicat a: https://doi.org/10.1512/iumj.2020.69.8000
dc.relation.ispartofIndiana University Mathematics Journal, 2020, vol. 69, p. 1543-1558
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/703269/EU//CoTraDy
dc.relation.urihttps://doi.org/10.1512/iumj.2020.69.8000
dc.rights(c) Indiana University Mathematics Journal, 2020
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationSistemes dinàmics diferenciables
dc.subject.classificationFuncions de variables complexes
dc.subject.classificationEquacions funcionals
dc.subject.otherDifferentiable dynamical systems
dc.subject.otherFunctions of complex variables
dc.subject.otherFunctional equations
dc.titleSingular values and non-repelling cycles for entire transcendental maps
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/submittedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
683533.pdf
Mida:
307.75 KB
Format:
Adobe Portable Document Format