Newton Trajectories for the tilted Frenkel‐Kontorova model
| dc.contributor.author | Quapp, Wolfgang | |
| dc.contributor.author | Bofill i Villà, Josep M. | |
| dc.date.accessioned | 2020-03-18T10:05:22Z | |
| dc.date.available | 2020-03-18T10:05:22Z | |
| dc.date.issued | 2019-02-06 | |
| dc.date.updated | 2020-03-18T10:05:22Z | |
| dc.description.abstract | Newton trajectories are used for the Frenkel-Kontorova model of a finite chain with free-end bound- ary conditions. We optimise stationary structures, as well as barrier breakdown points for a critical tilting force were depinning of the chain happens. These special points can be obtained straight for- wardly by the tool of Newton trajectories. We explain the theory and add examples for a finite-length chain of a fixed number of 2, 3, 4, 5 and 23 particles. | |
| dc.format.extent | 18 p. | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.idgrec | 685674 | |
| dc.identifier.issn | 0026-8976 | |
| dc.identifier.uri | https://hdl.handle.net/2445/152915 | |
| dc.language.iso | eng | |
| dc.publisher | Taylor and Francis | |
| dc.relation.isformatof | Versió postprint del document publicat a: https://doi.org/10.1080/00268976.2019.1576930 | |
| dc.relation.ispartof | Molecular Physics, 2019, vol. 117, num. 9-12, p. 1541-1558 | |
| dc.relation.uri | https://doi.org/10.1080/00268976.2019.1576930 | |
| dc.rights | (c) Taylor and Francis, 2019 | |
| dc.rights.accessRights | info:eu-repo/semantics/openAccess | |
| dc.source | Articles publicats en revistes (Química Inorgànica i Orgànica) | |
| dc.subject.classification | Química física | |
| dc.subject.classification | Estructura electrònica | |
| dc.subject.classification | Teories no lineals | |
| dc.subject.other | Physical and theoretical chemistry | |
| dc.subject.other | Electronic structure | |
| dc.subject.other | Nonlinear theories | |
| dc.title | Newton Trajectories for the tilted Frenkel‐Kontorova model | |
| dc.type | info:eu-repo/semantics/article | |
| dc.type | info:eu-repo/semantics/acceptedVersion |
Fitxers
Paquet original
1 - 1 de 1