Classificació diferenciable de les superfícies compactes

dc.contributor.advisorMundet i Riera, Ignasi
dc.contributor.authorSempere Camín, Paula
dc.date.accessioned2023-04-14T07:52:05Z
dc.date.available2023-04-14T07:52:05Z
dc.date.issued2022-06-13
dc.descriptionTreballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2022, Director: Ignasi Mundet i Rieraca
dc.description.abstract[en] The classification of compact surfaces was already adressed in the 19th century. Both A. F. Möbius and C. Jordan studied this question by considering two surfaces equivalent if they could be decomposed into infinite small pieces such that contiguous pieces of one surface corresponded to contiguous pieces of the other one. In addition, B. Riemann introduced the idea of classifying surfaces according to connectivity. Given a surface, he defined connectivity in base of the maximum number of cuts along closed curves or along arcs joining points on the edge that can be made without making the surface disconnected. The result that determines the classification of compact surfaces is as follows: Every compact, connected surface is diffeomorphic to a unique type of model surface. In this paper we will study the concepts and the theory behind the classification of compact surfaces which are needed to be able to give a proof of the result previously announced. We will go over: Morse functions and Morse’s lemma, the regular interval theorem, isotopy extensions, isotopies of disks and the construction of model surfaces.ca
dc.format.extent50 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/196782
dc.language.isocatca
dc.rightscc-by-nc-nd (c) Paula Sempere Camín, 2022
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceTreballs Finals de Grau (TFG) - Matemàtiques
dc.subject.classificationVarietats diferenciablesca
dc.subject.classificationTreballs de fi de grau
dc.subject.classificationVarietats topològiquesca
dc.subject.classificationTopologia diferencialca
dc.subject.otherDifferentiable manifoldsen
dc.subject.otherBachelor's theses
dc.subject.otherTopological manifoldsen
dc.subject.otherDifferential topologyen
dc.titleClassificació diferenciable de les superfícies compactesca
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
tfg_sempere_camin_paula.pdf
Mida:
1.32 MB
Format:
Adobe Portable Document Format
Descripció:
Memòria