Performance of Three Measures of Comorbidity in Predicting Critical COVID-19: A Retrospective Analysis of 4607 Hospitalized Patients

dc.contributor.authorMonterde, David
dc.contributor.authorCarot Sans, Gerard
dc.contributor.authorCainzos Achirica, Miguel
dc.contributor.authorAbilleira, Sònia
dc.contributor.authorCoca, Marc
dc.contributor.authorVela, Emili
dc.contributor.authorClèries, Montse
dc.contributor.authorValero Bover, Damià
dc.contributor.authorComín Colet, Josep
dc.contributor.authorGarcía Eroles, Luis
dc.contributor.authorPérez Sust, Pol
dc.contributor.authorArrufat, Miquel
dc.contributor.authorLejardi Estevez, Yolanda
dc.contributor.authorPiera Jiménez, Jordi
dc.date.accessioned2021-12-13T11:45:14Z
dc.date.available2021-12-13T11:45:14Z
dc.date.issued2021-11-01
dc.date.updated2021-12-10T08:11:32Z
dc.description.abstractBackground: Comorbidity burden has been identified as a relevant predictor of critical illness in patients hospitalized with coronavirus disease 2019 (COVID-19). However, comorbidity burden is often represented by a simple count of few conditions that may not fully capture patients' complexity. Purpose: To evaluate the performance of a comprehensive index of the comorbidity burden (Queralt DxS), which includes all chronic conditions present on admission, as an adjustment variable in models for predicting critical illness in hospitalized COVID-19 patients and compare it with two broadly used measures of comorbidity. Materials and methods: We analyzed data from all COVID-19 hospitalizations reported in eight public hospitals in Catalonia (North-East Spain) between June 15 and December 8 2020. The primary outcome was a composite of critical illness that included the need for invasive mechanical ventilation, transfer to ICU, or in-hospital death. Predictors including age, sex, and comorbidities present on admission measured using three indices: the Charlson index, the Elixhauser index, and the Queralt DxS index for comorbidities on admission. The performance of different fitted models was compared using various indicators, including the area under the receiver operating characteristics curve (AUROCC). Results: Our analysis included 4607 hospitalized COVID-19 patients. Of them, 1315 experienced critical illness. Comorbidities significantly contributed to predicting the outcome in all summary indices used. AUC (95% CI) for prediction of critical illness was 0.641 (0.624-0.660) for the Charlson index, 0.665 (0.645-0.681) for the Elixhauser index, and 0.787 (0.773-0.801) for the Queralt DxS index. Other metrics of model performance also showed Queralt DxS being consistently superior to the other indices. Conclusion: In our analysis, the ability of comorbidity indices to predict critical illness in hospitalized COVID-19 patients increased with their exhaustivity. The comprehensive Queralt DxS index may improve the accuracy of predictive models for resource allocation and clinical decision-making in the hospital setting.
dc.format.extent9 p.
dc.format.mimetypeapplication/pdf
dc.identifier.pmid34849041
dc.identifier.urihttps://hdl.handle.net/2445/181795
dc.language.isoeng
dc.publisherInforma UK Limited
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.2147/RMHP.S326132
dc.relation.ispartofRisk Management and Healthcare Policy, 2021, vol. 14, p. 4729-4737
dc.relation.urihttps://doi.org/10.2147/RMHP.S326132
dc.rightscc by-nc (c) Monterde, David et al., 2021
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc/3.0/es/*
dc.sourceArticles publicats en revistes (Ciències Clíniques)
dc.subject.classificationCOVID-19
dc.subject.classificationMalalts hospitalitzats
dc.subject.classificationComorbiditat
dc.subject.otherCOVID-19
dc.subject.otherHospital patients
dc.subject.otherComorbidity
dc.titlePerformance of Three Measures of Comorbidity in Predicting Critical COVID-19: A Retrospective Analysis of 4607 Hospitalized Patients
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
RMHP-326132.pdf
Mida:
498.72 KB
Format:
Adobe Portable Document Format