Probing the meta-stability of oxide core/shell nanoparticle systems at atomic resolution

dc.contributor.authorRoldan, Manuel
dc.contributor.authorMayence, Arnaud
dc.contributor.authorLópez-Ortega, Alberto
dc.contributor.authorIshikawa, Ryo
dc.contributor.authorSalafranca, Juan
dc.contributor.authorEstrader i Bofarull, Marta
dc.contributor.authorSalazar-Alvarez, German
dc.contributor.authorBaró, M. D.
dc.contributor.authorNogués, Josep
dc.contributor.authorPennycook, Stephen J.
dc.contributor.authorVarela, María
dc.date.accessioned2021-04-16T10:00:49Z
dc.date.available2023-02-01T06:10:26Z
dc.date.issued2021-02-01
dc.date.updated2021-04-16T10:00:49Z
dc.description.abstractHybrid nanoparticles allow exploiting the interplay of confinement, proximity between different materials and interfacial effects. However, to harness their properties an in-depth understanding of their (meta)stability and interfacial characteristics is crucial. This is especially the case of nanosystems based on functional oxides working under reducing conditions, which may severely impact their properties. In this work, the in-situ electron-induced selective reduction of Mn3O4 to MnO is studied in magnetic Fe3O4/Mn3O4 and Mn3O4/Fe3O4 core/shell nanoparticles by means of high-resolution scanning transmission electron microscopy combined with electron energy-loss spectroscopy. Such in-situ transformation allows mimicking the actual processes in operando environments. A multi-stage image analysis using geometric phase analysis combined with particle image velocity enables direct monitoring of the relationship between structure, chemical composition and strain relaxation during the Mn3O4 reduction. In the case of Fe3O4/Mn3O4 core/shell the transformation occurs smoothly without the formation of defects. However, for the inverse Mn3O4/Fe3O4 core/shell configuration the electron beam-induced transformation occurs in different stages that include redox reactions and void formation followed by strain field relaxation via formation of defects. This study highlights the relevance of understanding the local dynamics responsible for changes in the particle composition in order to control stability and, ultimately, macroscopic functionality.
dc.format.extent9 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec711232
dc.identifier.issn1385-8947
dc.identifier.urihttps://hdl.handle.net/2445/176382
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1016/j.cej.2020.126820
dc.relation.ispartofChemical Engineering Journal, 2021, vol. 405, p. 126820
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/FP7/239739/EU//STEMOX
dc.relation.urihttps://doi.org/10.1016/j.cej.2020.126820
dc.rightscc-by-nc-nd (c) Elsevier B.V., 2021
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es
dc.sourceArticles publicats en revistes (Química Inorgànica i Orgànica)
dc.subject.classificationNanopartícules
dc.subject.classificationÒxids metàl·lics
dc.subject.classificationMicroscòpia electrònica
dc.subject.otherNanoparticles
dc.subject.otherMetallic oxides
dc.subject.otherElectron microscopy
dc.titleProbing the meta-stability of oxide core/shell nanoparticle systems at atomic resolution
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
711232.pdf
Mida:
1.91 MB
Format:
Adobe Portable Document Format