El Dipòsit Digital ha actualitzat el programari. Qualsevol incidència que trobeu si us plau contacteu amb dipositdigital@ub.edu.

 

Images of Galois representations and p-adic models of Shimura curves

dc.contributor.advisorBayer i Isant, Pilar, 1946-
dc.contributor.advisorWiese, Gabor
dc.contributor.authorAmorós Carafí, Laia, 1989-
dc.contributor.otherUniversitat de Barcelona. Departament d'Àlgebra i Geometria
dc.date.accessioned2018-04-06T08:14:14Z
dc.date.available2018-04-06T08:14:14Z
dc.date.issued2016-12-16
dc.date.updated2018-04-06T08:14:15Z
dc.description.abstract[eng] The Langlands program is a vast and unifying network of conjectures that connect the world of automorphic representations of reductive algebraic groups and the world of Galois representations. These conjectures associate an automorphic representation of a reductive algebraic group to every n-dimensional representation of a Galois group, and the other way around: they attach a Galois representation to any automorphic representation of a reductive algebraic group. Moreover, these correspondences are done in such a way that the automorphic L-functions attached to the two objects coincide. The theory of modular forms is a field of complex analysis whose main importance lies on its connections and applications to number theory. We will make use, on the one hand, of the arithmetic properties of modular forms to study certain Galois representations and their number theoretic meaning. On the other hand, we will use the geometric meaning of these complex analytic functions to study a natural generalization of modular curves. A modular curve is a geometric object that parametrizes isomorphism classes of elliptic curves together with some additional structure depending on some modular subgroup. The generalization that we will be interested in are the so called Shimura curves. We will be particularly interested in their p-adic models. In this thesis, we treat two different topics, one in each side of the Langlands program. In the Galois representations' side, we are interested in Galois representations that take values in local Hecke algebras attached to modular forms over finite fields. In the automorphic forms' side, we are interested in Shimura curves: we develop some arithmetic results in definite quaternion algebras and give some results about Mumford curves covering p-adic Shimura curves.
dc.format.extent130 p.
dc.format.mimetypeapplication/pdf
dc.identifier.tdxhttp://hdl.handle.net/10803/471452
dc.identifier.urihttps://hdl.handle.net/2445/121326
dc.language.isoeng
dc.publisherUniversitat de Barcelona
dc.rights(c) Amorós, 2016
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceTesis Doctorals - Departament - Algebra i Geometria
dc.subject.classificationGeometria algebraica aritmètica
dc.subject.classificationÀlgebres de Hecke
dc.subject.classificationFormes modulars
dc.subject.classificationCamps finits (Àlgebra)
dc.subject.classificationVarietats de Shimura
dc.subject.classificationTeoria algebraica de nombres
dc.subject.otherArithmetical algebraic geometry
dc.subject.otherHecke algebras
dc.subject.otherModular forms
dc.subject.otherFinite fields (Algebra)
dc.subject.otherShimura varieties
dc.subject.otherAlgebraic number theory
dc.titleImages of Galois representations and p-adic models of Shimura curves
dc.typeinfo:eu-repo/semantics/doctoralThesis
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
LAC_PhD_THESIS.pdf
Mida:
2.24 MB
Format:
Adobe Portable Document Format