Carregant...
Tipus de document
Treball de fi de màsterData de publicació
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/186070
SSSGAN:Satellite Style and Structure Generative Adversarial Networks
Títol de la revista
Autors
Director/Tutor
ISSN de la revista
Títol del volum
Recurs relacionat
Resum
[en] This work presents Satellite Style and Structure Generative Adversarial Network (SSGAN), a generative model of high resolution satellite imagery to support image segmentation. Based on spatially adaptive denormalization modules (SPADE) that modulate the activations with respect to segmentation map structure in addition to global descriptor vectors that capture the semantic information in a vector with respect to Open Street Maps (OSM) classes, this model is able to produce consistent aerial imagery. By decoupling the generation of aerial images into a structure map and a carefully defined style vector, we were able to improve the realism and geodiversity of the synthesis with respect to the state-of-the-art baseline. Therefore, the
proposed model allows to control the generation not only with respect to the desired structure, but also with respect to a geographic area.
Descripció
Treballs finals del Màster de Fonaments de Ciència de Dades, Facultat de matemàtiques, Universitat de Barcelona. Curs: 2020-2021. Tutor: Sergio Escalera Guerrero i Javier Marín Tur
Matèries (anglès)
Citació
Citació
TYLSON BAIXAULI, Emilio. SSSGAN:Satellite Style and Structure Generative Adversarial Networks. [consulta: 23 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/186070]