SSSGAN:Satellite Style and Structure Generative Adversarial Networks

dc.contributor.advisorEscalera Guerrero, Sergio
dc.contributor.advisorMarín Tur, Javier
dc.contributor.authorTylson Baixauli, Emilio
dc.date.accessioned2022-05-30T10:24:30Z
dc.date.available2022-05-30T10:24:30Z
dc.date.issued2021-06-30
dc.descriptionTreballs finals del Màster de Fonaments de Ciència de Dades, Facultat de matemàtiques, Universitat de Barcelona. Curs: 2020-2021. Tutor: Sergio Escalera Guerrero i Javier Marín Turca
dc.description.abstract[en] This work presents Satellite Style and Structure Generative Adversarial Network (SSGAN), a generative model of high resolution satellite imagery to support image segmentation. Based on spatially adaptive denormalization modules (SPADE) that modulate the activations with respect to segmentation map structure in addition to global descriptor vectors that capture the semantic information in a vector with respect to Open Street Maps (OSM) classes, this model is able to produce consistent aerial imagery. By decoupling the generation of aerial images into a structure map and a carefully defined style vector, we were able to improve the realism and geodiversity of the synthesis with respect to the state-of-the-art baseline. Therefore, the proposed model allows to control the generation not only with respect to the desired structure, but also with respect to a geographic area.ca
dc.format.extent39 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/186070
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Emilio Tylson Baixauli, 2021
dc.rightscodi: GPL (c) Emilio Tylson Baixauli, 2021
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://www.gnu.org/licenses/gpl-3.0.ca.html*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceMàster Oficial - Fonaments de la Ciència de Dades
dc.subject.classificationImatges satel·litàries
dc.subject.classificationVisió per ordinador
dc.subject.classificationAprenentatge automàtic
dc.subject.classificationTreballs de fi de màster
dc.subject.otherRemote-sensing images
dc.subject.otherComputer vision
dc.subject.otherMachine learning
dc.subject.otherMaster's theses
dc.titleSSSGAN:Satellite Style and Structure Generative Adversarial Networksca
dc.typeinfo:eu-repo/semantics/masterThesisca

Fitxers

Paquet original

Mostrant 1 - 2 de 2
Carregant...
Miniatura
Nom:
ETylson-sssgan_tfm_ub-e0beb851662f.zip
Mida:
71.1 MB
Format:
ZIP file
Descripció:
Codi font
Carregant...
Miniatura
Nom:
tfg_tylson_baixauli_emilio.pdf
Mida:
43.95 MB
Format:
Adobe Portable Document Format
Descripció:
Memòria