Many regular triangulations and many polytopes

dc.contributor.authorPadrol Sureda, Arnau
dc.contributor.authorPhilippe, Eva
dc.contributor.authorSantos Leal, Francisco
dc.date.accessioned2024-03-07T11:13:29Z
dc.date.available2024-03-07T11:13:29Z
dc.date.issued2023-07-01
dc.date.updated2024-03-07T11:13:30Z
dc.description.abstractWe show that for fixed $d>3$ and $n$ growing to infinity there are at least $(n !)^{d-2 \pm o(1)}$ different labeled combinatorial types of $d$-polytopes with $n$ vertices. This is about the square of the previous best lower bounds. As an intermediate step, we show that certain neighborly polytopes (such as particular realizations of cyclic polytopes) have at least $(n !)^{\lfloor(d-1) / 2\rfloor \pm o(1)}$ regular triangulations.
dc.format.extent19 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec742474
dc.identifier.issn0025-5831
dc.identifier.urihttps://hdl.handle.net/2445/208500
dc.language.isoeng
dc.publisherSpringer Verlag
dc.relation.isformatofReproducció del document publicat a: https://doi.org/http://dx.doi.org/10.1007/s00208-023-02652-4
dc.relation.ispartofMathematische Annalen, 2023
dc.relation.urihttps://doi.org/http://dx.doi.org/10.1007/s00208-023-02652-4
dc.rightscc-by (c) Arnau Padrol et al., 2023
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationPolitops
dc.subject.classificationGeometria convexa
dc.subject.otherPolytopes
dc.subject.otherConvex geometry
dc.titleMany regular triangulations and many polytopes
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
842208.pdf
Mida:
408.02 KB
Format:
Adobe Portable Document Format