Carregant...
Miniatura

Tipus de document

Treball de fi de grau

Data de publicació

Llicència de publicació

memòria: cc-by-nc-sa (c) Marc Beltrán Segarra, 2017
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/119796

Study of reconstruction ICA for feature extraction in images and signals

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Recurs relacionat

Resum

[en] During the last years, neural networks have become a vehicular discipline in the field of machine learning. At the same time, classical machine learning methods have become easier to use due to the availability of higher computational power. The goal of this project is to reconstruct a classical machine learning algorithm used for feature and source extraction (ICA) using neural networks. This reconstruction could bypass some of the drawbacks presents when using ICA. We have studied how the reconstruction operates under different conditions and performed a comparison with the classical algorithm that we reconstructed.

Descripció

Treballs Finals de Grau d'Enginyeria Informàtica, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2017, Director: Laura Igual Muñoz

Citació

Citació

BELTRÁN SEGARRA, Marc. Study of reconstruction ICA for feature extraction in images and signals. [consulta: 10 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/119796]

Exportar metadades

JSON - METS

Compartir registre