Study of reconstruction ICA for feature extraction in images and signals

dc.contributor.advisorIgual Muñoz, Laura
dc.contributor.authorBeltrán Segarra, Marc
dc.date.accessioned2018-02-13T11:42:54Z
dc.date.available2018-02-13T11:42:54Z
dc.date.issued2017-06-22
dc.descriptionTreballs Finals de Grau d'Enginyeria Informàtica, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2017, Director: Laura Igual Muñozca
dc.description.abstract[en] During the last years, neural networks have become a vehicular discipline in the field of machine learning. At the same time, classical machine learning methods have become easier to use due to the availability of higher computational power. The goal of this project is to reconstruct a classical machine learning algorithm used for feature and source extraction (ICA) using neural networks. This reconstruction could bypass some of the drawbacks presents when using ICA. We have studied how the reconstruction operates under different conditions and performed a comparison with the classical algorithm that we reconstructed.ca
dc.format.extent43 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/119796
dc.language.isoengca
dc.rightsmemòria: cc-by-nc-sa (c) Marc Beltrán Segarra, 2017
dc.rightscodi: GPL (c) Marc Beltrán Segarra, 2017
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-sa/3.0/es
dc.rights.urihttp://www.gnu.org/licenses/gpl-3.0.ca.html
dc.sourceTreballs Finals de Grau (TFG) - Enginyeria Informàtica
dc.subject.classificationXarxes neuronals (Informàtica)cat
dc.subject.classificationAprenentatge automàticcat
dc.subject.classificationProgramaricat
dc.subject.classificationTreballs de fi de graucat
dc.subject.classificationAlgorismes computacionalsca
dc.subject.otherNeural networks (Computer science)eng
dc.subject.otherMachine learningeng
dc.subject.otherComputer softwareeng
dc.subject.otherBachelor's theseseng
dc.subject.otherComputer algorithmsen
dc.titleStudy of reconstruction ICA for feature extraction in images and signalsca
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 2 de 2
Carregant...
Miniatura
Nom:
codi_font.zip
Mida:
26.25 MB
Format:
ZIP file
Descripció:
Codi font
Carregant...
Miniatura
Nom:
memoria.pdf
Mida:
2.46 MB
Format:
Adobe Portable Document Format
Descripció:
Memòria