Differentiation of multiple system atrophy subtypes by gray matter atrophy

dc.contributor.authorCampabadal Delgado, Anna
dc.contributor.authorAbós, Alexandra
dc.contributor.authorSegura i Fàbregas, Bàrbara
dc.contributor.authorMonté Rubio, Gemma C.
dc.contributor.authorPérez Soriano, Alexandra
dc.contributor.authorGiraldo, Darly M.
dc.contributor.authorMuñoz, Esteban
dc.contributor.authorCompta, Yaroslau
dc.contributor.authorJunqué i Plaja, Carme, 1955-
dc.contributor.authorMartí Domènech, Ma. Josep
dc.date.accessioned2021-12-21T17:50:10Z
dc.date.available2021-12-21T17:50:10Z
dc.date.issued2021-09-10
dc.date.updated2021-12-21T17:50:10Z
dc.description.abstractBackground and purpose: Multiple system atrophy(MSA) is a rare adult-onset synucleinopathy that can be divided in two subtypes depending on whether the prevalence of its symptoms is more parkinsonian or cerebellar (MSA-P and MSA-C, respectively). The aim of this work is to investigate the structural MRI changes able to discriminate MSA phenotypes. Methods: The sample includes 31 MSA patients (15 MSA-C and 16 MSA-P) and 39 healthy controls. Participants underwent a comprehensive motor and neuropsychological battery. MRI data were acquired with a 3T scanner (MAGNETOM Trio, Siemens, Germany). FreeSurfer was used to obtain volumetric and cortical thickness measures. A Support Vector Machine (SVM) algorithm was used to assess the classification between patients' group using cortical and subcortical structural data. Results: After correction for multiple comparisons, MSA-C patients had greater atrophy than MSA-P in the left cerebellum, whereas MSA-P showed reduced volume bilaterally in the pallidum and putamen. Using deep gray matter volume ratios and mean cortical thickness as features, the SVM algorithm provided a consistent classification between MSA-C and MSA-P patients (balanced accuracy 74.2%, specificity 75.0%, and sensitivity 73.3%). The cerebellum, putamen, thalamus, ventral diencephalon, pallidum, and caudate were the most contributing features to the classification decision (z > 3.28; p < .05 [false discovery rate]). Conclusions: MSA-C and MSA-P with similar disease severity and duration have a differential distribution of gray matter atrophy. Although cerebellar atrophy is a clear differentiator between groups, thalamic and basal ganglia structures are also relevant contributors to distinguishing MSA subtypes. Keywords: cognition; cortical thickness; machine learning; multiple system atrophy; neuroimaging.
dc.format.extent10 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec714870
dc.identifier.issn1051-2284
dc.identifier.urihttps://hdl.handle.net/2445/181941
dc.language.isoeng
dc.publisherWiley
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1111/jon.12927
dc.relation.ispartofJournal of Neuroimaging, 2021
dc.relation.urihttps://doi.org/10.1111/jon.12927
dc.rightscc by-nc-nd (c) Campabadal, Anna et al., 2021
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceArticles publicats en revistes (Medicina)
dc.subject.classificationCognició
dc.subject.classificationAtròfia muscular
dc.subject.otherCognition
dc.subject.otherMuscular atrophy
dc.titleDifferentiation of multiple system atrophy subtypes by gray matter atrophy
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
714870.pdf
Mida:
2.94 MB
Format:
Adobe Portable Document Format