Carregant...
Miniatura

Tipus de document

Article

Versió

Versió publicada

Data de publicació

Llicència de publicació

cc-by (c)  Caros Mariona et al., 2024
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/215777

Effective Training and Inference Strategies for Point Classification in LiDAR Scenes

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

Light Detection and Ranging systems serve as robust tools for creating three-dimensional representations of the Earth’s surface. These representations are known as point clouds. Point cloud scene segmentation is essential in a range of applications aimed at understanding the environment, such as infrastructure planning and monitoring. However, automating this process can result in notable challenges due to variable point density across scenes, ambiguous object shapes, and substantial class imbalances. Consequently, manual intervention remains prevalent in point classification, allowing researchers to address these complexities. In this work, we study the elements contributing to the automatic semantic segmentation process with deep learning, conducting empirical evaluations on a self-captured dataset by a hybrid airborne laser scanning sensor combined with two nadir cameras in RGB and near-infrared over a 247 km2 terrain characterized by hilly topography, urban areas, and dense forest cover. Our findings emphasize the importance of employing appropriate training and inference strategies to achieve accurate classification of data points across all categories. The proposed methodology not only facilitates the segmentation of varying size point clouds but also yields a significant performance improvement compared to preceding methodologies, achieving a mIoU of 94.24% on our self-captured dataset.

Citació

Citació

CARÓS, Mariona, JUST, Ariadna, SEGUÍ MESQUIDA, Santi, VITRIÀ I MARCA, Jordi. Effective Training and Inference Strategies for Point Classification in LiDAR Scenes. _Remote Sensing_. 2024. Vol. 16, núm. 12. [consulta: 14 de gener de 2026]. ISSN: 2072-4292. [Disponible a: https://hdl.handle.net/2445/215777]

Exportar metadades

JSON - METS

Compartir registre