Effective Training and Inference Strategies for Point Classification in LiDAR Scenes

dc.contributor.authorCarós, Mariona
dc.contributor.authorJust, Ariadna
dc.contributor.authorSeguí Mesquida, Santi
dc.contributor.authorVitrià i Marca, Jordi
dc.date.accessioned2024-10-15T07:56:40Z
dc.date.available2024-10-15T07:56:40Z
dc.date.issued2024-06-13
dc.date.updated2024-10-15T07:56:40Z
dc.description.abstractLight Detection and Ranging systems serve as robust tools for creating three-dimensional representations of the Earth’s surface. These representations are known as point clouds. Point cloud scene segmentation is essential in a range of applications aimed at understanding the environment, such as infrastructure planning and monitoring. However, automating this process can result in notable challenges due to variable point density across scenes, ambiguous object shapes, and substantial class imbalances. Consequently, manual intervention remains prevalent in point classification, allowing researchers to address these complexities. In this work, we study the elements contributing to the automatic semantic segmentation process with deep learning, conducting empirical evaluations on a self-captured dataset by a hybrid airborne laser scanning sensor combined with two nadir cameras in RGB and near-infrared over a 247 km2 terrain characterized by hilly topography, urban areas, and dense forest cover. Our findings emphasize the importance of employing appropriate training and inference strategies to achieve accurate classification of data points across all categories. The proposed methodology not only facilitates the segmentation of varying size point clouds but also yields a significant performance improvement compared to preceding methodologies, achieving a mIoU of 94.24% on our self-captured dataset.
dc.format.extent28 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec750788
dc.identifier.issn2072-4292
dc.identifier.urihttps://hdl.handle.net/2445/215777
dc.language.isoeng
dc.publisherMDPI
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.3390/rs16122153
dc.relation.ispartofRemote Sensing, 2024, vol. 16, num.12
dc.relation.urihttps://doi.org/10.3390/rs16122153
dc.rightscc-by (c) Caros Mariona et al., 2024
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationVisualització tridimensional
dc.subject.classificationTeledetecció
dc.subject.classificationVisió per ordinador
dc.subject.otherThree-dimensional display systems
dc.subject.otherRemote sensing
dc.subject.otherComputer vision
dc.titleEffective Training and Inference Strategies for Point Classification in LiDAR Scenes
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
867921.pdf
Mida:
26.21 MB
Format:
Adobe Portable Document Format