Convergence to the brownian motion

dc.contributor.advisorRovira Escofet, Carles
dc.contributor.authorCano i Cànovas, Marc
dc.date.accessioned2023-09-20T10:04:30Z
dc.date.available2023-09-20T10:04:30Z
dc.date.issued2023-06-28
dc.descriptionTreballs finals del Màster en Matemàtica Avançada, Facultat de Matemàtiques, Universitat de Barcelona: Curs: 2022-2023. Director: Carles Rovira Escofetca
dc.description.abstract[en] The Brownian motion is a stochastic process that models the motion of particles suspended in a liquid or a gas. In mathematics, it also plays a vital role in stochastic calculus. This thesis consists in the proving of three different results of convergence towards the Brownian motion. The first one is proving the Donsker’s theorem, for which different notions of convergence, such as weakly convergence or convergence in distribution, are introduced. The second result consists in the proving of a certain type of stochastic processes converging in distribution towards the Brownian motion. For the last result, uniform transport processes are presented and then it is showed that they converge almost surely to the Brownian motion. In addition, a couple of results that extend this almost sure convergence are mentioned.ca
dc.format.extent63 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/202068
dc.language.isoengca
dc.rightscc by-nc-nd (c) Marc Cano i Cànovas, 2023
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceMàster Oficial - Matemàtica Avançada
dc.subject.classificationMoviment browniàcat
dc.subject.classificationProcessos estocàsticscat
dc.subject.classificationTreballs de fi de màstercat
dc.subject.otherBrownian movementseng
dc.subject.otherStochastic processeseng
dc.subject.otherMaster's thesiseng
dc.titleConvergence to the brownian motionca
dc.typeinfo:eu-repo/semantics/masterThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
tfm_cano_canovas_marc.pdf
Mida:
741.71 KB
Format:
Adobe Portable Document Format
Descripció:
Memòria