Evaluation of CNV detection tools for NGS panel data in genetic diagnostics

dc.contributor.authorMoreno Cabrera, José Marcos
dc.contributor.authorValle Domínguez, Jesús del
dc.contributor.authorCastellanos, Elisabeth
dc.contributor.authorFeliubadaló i Elorza, Maria Lídia
dc.contributor.authorPineda Riu, Marta
dc.contributor.authorBrunet, Joan
dc.contributor.authorSerra Arenas, Eduard,
dc.contributor.authorCapellá, G. (Gabriel)
dc.contributor.authorLázaro García, Conxi
dc.contributor.authorGel Moreno, Bernat
dc.date.accessioned2021-02-02T07:05:17Z
dc.date.available2021-02-02T07:05:17Z
dc.date.issued2020-12-01
dc.date.updated2021-01-25T08:41:23Z
dc.description.abstractAlthough germline copy-number variants (CNVs) are the genetic cause of multiple hereditary diseases, detecting them from targeted next-generation sequencing data (NGS) remains a challenge. Existing tools perform well for large CNVs but struggle with single and multi-exon alterations. The aim of this work is to evaluate CNV calling tools working on gene panel NGS data and their suitability as a screening step before orthogonal confirmation in genetic diagnostics strategies. Five tools (DECoN, CoNVaDING, panelcn.MOPS, ExomeDepth, and CODEX2) were tested against four genetic diagnostics datasets (two in-house and two external) for a total of 495 samples with 231 single and multi-exon validated CNVs. The evaluation was performed using the default and sensitivity-optimized parameters. Results showed that most tools were highly sensitive and specific, but the performance was dataset dependant. When evaluating them in our diagnostics scenario, DECoN and panelcn.MOPS detected all CNVs with the exception of one mosaic CNV missed by DECoN. However, DECoN outperformed panelcn.MOPS specificity achieving values greater than 0.90 when using the optimized parameters. In our in-house datasets, DECoN and panelcn.MOPS showed the highest performance for CNV screening before orthogonal confirmation. Benchmarking and optimization code is freely available at https://github.com/TranslationalBioinformaticsIGTP/CNVbenchmarkeR.
dc.format.extent11 p.
dc.format.mimetypeapplication/pdf
dc.identifier.pmid32561899
dc.identifier.urihttps://hdl.handle.net/2445/173588
dc.language.isoeng
dc.publisherSpringer Nature
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1038/s41431-020-0675-z
dc.relation.ispartofEuropean Journal of Human Genetics, 2020, vol. 28, num. 12, p. 1645-1655
dc.relation.urihttps://doi.org/10.1038/s41431-020-0675-z
dc.rightscc by (c) Moreno Cabrera et al., 2020
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/
dc.sourceArticles publicats en revistes (Institut d'lnvestigació Biomèdica de Bellvitge (IDIBELL))
dc.subject.classificationMalalties hereditàries
dc.subject.classificationCèl·lules germinals
dc.subject.otherGenetic disorders
dc.subject.otherGerm cells
dc.titleEvaluation of CNV detection tools for NGS panel data in genetic diagnostics
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
Moreno-CabreraJM.pdf
Mida:
1.28 MB
Format:
Adobe Portable Document Format