Carregant...
Fitxers
Tipus de document
ArticleVersió
Versió publicadaData de publicació
Llicència de publicació
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/190628
Free boundary regularity for almost every solution to the Signorini problem
Títol de la revista
ISSN de la revista
Títol del volum
Resum
We investigate the regularity of the free boundary for the Signorini problem in $\mathbb{R}^{n+1}$. It is known that regular points are $(n-1)$-dimensional and $C^{\infty}$. However, even for $C^{\infty}$ obstacles $\varphi$, the set of non-regular (or degenerate) points could be very large-e.g. with infinite $\mathcal{H}^{n-1}$ measure. The only two assumptions under which a nice structure result for degenerate points has been established are when $\varphi$ is analytic, and when $\Delta \varphi<0$. However, even in these cases, the set of degenerate points is in general $(n-1)$-dimensional-as large as the set of regular points. In this work, we show for the first time that, 'usually', the set of degenerate points is small. Namely, we prove that, given any $C^{\infty}$ obstacle, for almost every solution the nonregular part of the free boundary is at most $(n-2)$-dimensional. This is the first result in this direction for the Signorini problem. Furthermore, we prove analogous results for the obstacle problem for the fractional Laplacian $(-\Delta)^s$, and for the parabolic Signorini problem. In the parabolic Signorini problem, our main result establishes that the non-regular part of the free boundary is $\left(n-1-\alpha_{\circ}\right)$-dimensional for almost all times $t$, for some $\alpha_{\circ}>0$. Finally, we construct some new examples of free boundaries with degenerate points.
Descripció
Matèries
Matèries (anglès)
Citació
Citació
FERNANDEZ-REAL, Xavier, ROS, Xavier. Free boundary regularity for almost every solution to the Signorini problem. _Archive for Rational Mechanics and Analysis_. 2021. Vol. 240, núm. 419-466. [consulta: 24 de novembre de 2025]. ISSN: 0003-9527. [Disponible a: https://hdl.handle.net/2445/190628]