Free boundary regularity for almost every solution to the Signorini problem

dc.contributor.authorFernandez-Real, Xavier
dc.contributor.authorRos, Xavier
dc.date.accessioned2022-11-09T10:52:58Z
dc.date.available2022-11-09T10:52:58Z
dc.date.issued2021-02-11
dc.date.updated2022-11-09T10:52:58Z
dc.description.abstractWe investigate the regularity of the free boundary for the Signorini problem in $\mathbb{R}^{n+1}$. It is known that regular points are $(n-1)$-dimensional and $C^{\infty}$. However, even for $C^{\infty}$ obstacles $\varphi$, the set of non-regular (or degenerate) points could be very large-e.g. with infinite $\mathcal{H}^{n-1}$ measure. The only two assumptions under which a nice structure result for degenerate points has been established are when $\varphi$ is analytic, and when $\Delta \varphi<0$. However, even in these cases, the set of degenerate points is in general $(n-1)$-dimensional-as large as the set of regular points. In this work, we show for the first time that, 'usually', the set of degenerate points is small. Namely, we prove that, given any $C^{\infty}$ obstacle, for almost every solution the nonregular part of the free boundary is at most $(n-2)$-dimensional. This is the first result in this direction for the Signorini problem. Furthermore, we prove analogous results for the obstacle problem for the fractional Laplacian $(-\Delta)^s$, and for the parabolic Signorini problem. In the parabolic Signorini problem, our main result establishes that the non-regular part of the free boundary is $\left(n-1-\alpha_{\circ}\right)$-dimensional for almost all times $t$, for some $\alpha_{\circ}>0$. Finally, we construct some new examples of free boundaries with degenerate points.
dc.format.extent48 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec710620
dc.identifier.issn0003-9527
dc.identifier.urihttps://hdl.handle.net/2445/190628
dc.language.isoeng
dc.publisherSpringer Verlag
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1007/s00205-021-01617-8
dc.relation.ispartofArchive for Rational Mechanics and Analysis, 2021, num. 240, p. 419-466
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/721675/EU//RSPDE
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/801867/EU//EllipticPDE
dc.relation.urihttps://doi.org/10.1007/s00205-021-01617-8
dc.rightscc by (c) Xavier Fernandez-Real et al., 2021
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationEquacions en derivades parcials
dc.subject.classificationMecànica
dc.subject.classificationSòlids
dc.subject.otherPartial differential equations
dc.subject.otherMechanics
dc.subject.otherSolids
dc.titleFree boundary regularity for almost every solution to the Signorini problem
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
710620.pdf
Mida:
603.93 KB
Format:
Adobe Portable Document Format