El Dipòsit Digital ha actualitzat el programari. Contacteu amb dipositdigital@ub.edu per informar de qualsevol incidència.

 
Carregant...
Miniatura

Tipus de document

Article

Versió

Versió publicada

Data de publicació

Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/220925

Double power-law universal scaling function for the distribution of waiting times in labquake catalogs

Títol de la revista

ISSN de la revista

Títol del volum

Resum

We postulate that waiting times between avalanches in self-organized critical systems are distributed according to a universal double power-law probability density. This density is defined by two critical exponents and characterizing the distribution of short (∼ − ) and long (∼ − ) waiting times, and a crossover parameter 0 that separates the two behaviors in a sharp shoulder. This crossover parameter depends on the system properties as well as on the observation conditions. It can be used as a scaling factor that transforms the distributions into a universal scaling law as proposed by Per Bak. We use experimental data from labquake catalogs (acoustic emission events) obtained during the uniaxial compression of a number of charcoal samples with different hardnesses and different energy thresholds. To obtain good fits it is essential that the catalogs are long enough to include a representative critical mixture of periods with different avalanche rates. In all the cases studied, individual maximum likelihood analysis allows the exponents and and the crossover parameter 0 to be fitted. This parameter shows a clear dependence with the energy threshold that can be explained from the Gutenberg-Richter law for the avalanche energy distributions. The observed variations of the exponents and fall within the sample-to-sample variability, which suggest that these values could be universal. We estimate mean values =0.9±0.1 and =2.0±0.3 from the full set of recorded experimental data. These values are close to the combination =1, =2, which exhibits a special mathematical cancellation of singularities.

Descripció

Citació

Citació

HONGLIAN, Li, VALDÉS, Emma, VIVES I SANTA-EULÀLIA, Eduard. Double power-law universal scaling function for the distribution of waiting times in labquake catalogs. _Physical Review e_. 2024. Vol. 110, núm. 6. [consulta: 1 de desembre de 2025]. ISSN: 2470-0045. [Disponible a: https://hdl.handle.net/2445/220925]

Exportar metadades

JSON - METS

Compartir registre