El Dipòsit Digital ha actualitzat el programari. Contacteu amb dipositdigital@ub.edu per informar de qualsevol incidència.

 

Double power-law universal scaling function for the distribution of waiting times in labquake catalogs

dc.contributor.authorHonglian, Li
dc.contributor.authorValdés, Emma
dc.contributor.authorVives i Santa-Eulàlia, Eduard
dc.date.accessioned2025-05-09T14:26:19Z
dc.date.available2025-05-09T14:26:19Z
dc.date.issued2024-12-20
dc.date.updated2025-05-09T14:26:19Z
dc.description.abstractWe postulate that waiting times between avalanches in self-organized critical systems are distributed according to a universal double power-law probability density. This density is defined by two critical exponents and characterizing the distribution of short (∼ − ) and long (∼ − ) waiting times, and a crossover parameter 0 that separates the two behaviors in a sharp shoulder. This crossover parameter depends on the system properties as well as on the observation conditions. It can be used as a scaling factor that transforms the distributions into a universal scaling law as proposed by Per Bak. We use experimental data from labquake catalogs (acoustic emission events) obtained during the uniaxial compression of a number of charcoal samples with different hardnesses and different energy thresholds. To obtain good fits it is essential that the catalogs are long enough to include a representative critical mixture of periods with different avalanche rates. In all the cases studied, individual maximum likelihood analysis allows the exponents and and the crossover parameter 0 to be fitted. This parameter shows a clear dependence with the energy threshold that can be explained from the Gutenberg-Richter law for the avalanche energy distributions. The observed variations of the exponents and fall within the sample-to-sample variability, which suggest that these values could be universal. We estimate mean values =0.9±0.1 and =2.0±0.3 from the full set of recorded experimental data. These values are close to the combination =1, =2, which exhibits a special mathematical cancellation of singularities.
dc.format.extent11 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec756538
dc.identifier.issn2470-0045
dc.identifier.urihttps://hdl.handle.net/2445/220925
dc.language.isoeng
dc.publisherAmerican Physical Society
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1103/PhysRevE.110.064140
dc.relation.ispartofPhysical Review e, 2024, vol. 110, num.6
dc.relation.urihttps://doi.org/10.1103/PhysRevE.110.064140
dc.rights(c) American Physical Society, 2024
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Física de la Matèria Condensada)
dc.subject.classificationFenomenologia
dc.subject.classificationTerratrèmols
dc.subject.classificationSistemes complexos
dc.subject.otherPhenomenology
dc.subject.otherEarthquakes
dc.subject.otherComplex systems
dc.titleDouble power-law universal scaling function for the distribution of waiting times in labquake catalogs
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
886441.pdf
Mida:
1.56 MB
Format:
Adobe Portable Document Format