Carregant...
Miniatura

Tipus de document

Article

Versió

Versió publicada

Data de publicació

Llicència de publicació

cc by (c) Johnston et al., 2019
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/138980

Precision identification of high-risk phenotypes and progression pathways in severe malaria without requiring longitudinal data

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

More than 400,000 deaths from severe malaria (SM) are reported every year, mainly in African children. The diversity of clinical presentations associated with SM indicates important differences in disease pathogenesis that require specific treatment, and this clinical heterogeneity of SM remains poorly understood. Here, we apply tools from machine learning and model-based inference to harness large-scale data and dissect the heterogeneity in patterns of clinical features associated with SM in 2904 Gambian children admitted to hospital with malaria. This quantitative analysis reveals features predicting the severity of individual patient outcomes, and the dynamic pathways of SM progression, notably inferred without requiring longitudinal observations. Bayesian inference of these pathways allows us assign quantitative mortality risks to individual patients. By independently surveying expert practitioners, we show that this data-driven approach agrees with and expands the current state of knowledge on malaria progression, while simultaneously providing a data-supported framework for predicting clinical risk.

Matèries

Matèries (anglès)

Citació

Citació

JOHNSTON, Iain g., HOFFMANN, Till, GREENBURY, Sam f., COMINETTI, Ornella, JALLOW, Muminatou, KWIATKOWSKI, Dominic, BARAHONA, Mauricio, JONES, Nick s., CASALS PASCUAL, Climent. Precision identification of high-risk phenotypes and progression pathways in severe malaria without requiring longitudinal data. _NPJ Digital Medicine_. 2019. Vol. 2. [consulta: 22 de gener de 2026]. ISSN: 2398-6352. [Disponible a: https://hdl.handle.net/2445/138980]

Exportar metadades

JSON - METS

Compartir registre