Precision identification of high-risk phenotypes and progression pathways in severe malaria without requiring longitudinal data

dc.contributor.authorJohnston, Iain G.
dc.contributor.authorHoffmann, Till
dc.contributor.authorGreenbury, Sam F.
dc.contributor.authorCominetti, Ornella
dc.contributor.authorJallow, Muminatou
dc.contributor.authorKwiatkowski, Dominic
dc.contributor.authorBarahona, Mauricio
dc.contributor.authorJones, Nick S.
dc.contributor.authorCasals Pascual, Climent
dc.date.accessioned2019-09-02T09:48:17Z
dc.date.available2019-09-02T09:48:17Z
dc.date.issued2019-07-10
dc.date.updated2019-07-19T18:00:55Z
dc.description.abstractMore than 400,000 deaths from severe malaria (SM) are reported every year, mainly in African children. The diversity of clinical presentations associated with SM indicates important differences in disease pathogenesis that require specific treatment, and this clinical heterogeneity of SM remains poorly understood. Here, we apply tools from machine learning and model-based inference to harness large-scale data and dissect the heterogeneity in patterns of clinical features associated with SM in 2904 Gambian children admitted to hospital with malaria. This quantitative analysis reveals features predicting the severity of individual patient outcomes, and the dynamic pathways of SM progression, notably inferred without requiring longitudinal observations. Bayesian inference of these pathways allows us assign quantitative mortality risks to individual patients. By independently surveying expert practitioners, we show that this data-driven approach agrees with and expands the current state of knowledge on malaria progression, while simultaneously providing a data-supported framework for predicting clinical risk.
dc.format.extent9 p.
dc.format.mimetypeapplication/pdf
dc.identifier.issn2398-6352
dc.identifier.urihttps://hdl.handle.net/2445/138980
dc.language.isoeng
dc.publisherSpringer Nature Publishing
dc.relation.isformatofReproducció del document publicat a: http://dx.doi.org/10.1038/s41746-019-0140-y
dc.relation.ispartofNPJ Digital Medicine, 2019, vol. 2
dc.relation.urihttp://dx.doi.org/10.1038/s41746-019-0140-y
dc.rightscc by (c) Johnston et al., 2019
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/
dc.sourceArticles publicats en revistes (ISGlobal)
dc.subject.classificationMalària
dc.subject.classificationInfants
dc.subject.otherMalaria
dc.subject.otherChildren
dc.titlePrecision identification of high-risk phenotypes and progression pathways in severe malaria without requiring longitudinal data
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
JohnstonIG_NPJ_Digit_Med_2019.pdf
Mida:
1.98 MB
Format:
Adobe Portable Document Format