Periodic solutions to integro-differential equations: variational formulation, symmetry, and regularity

dc.contributor.authorCabré Vilagut, Xavier
dc.contributor.authorCsató, Gyula
dc.contributor.authorMas Blesa, Albert
dc.date.accessioned2026-02-12T09:39:59Z
dc.date.available2026-02-12T09:39:59Z
dc.date.issued2025-01-17
dc.date.updated2026-02-12T09:39:59Z
dc.description.abstractWe consider nonconstant periodic constrained minimizers of semilinear elliptic equations for integro-differential operators in $\mathbb{R}$. We prove that, after an appropriate translation, each of them is necessarily an even function which is decreasing in half its period. In particular, it has only two critical points in half its period, the absolute maximum and minimum. If these statements hold for all nonconstant periodic solutions, and not only for constrained minimizers, remains as an open problem. Our results apply to operators with kernels in two different classes: kernels $K$ which are convex and kernels for which $K\left(\tau^{1 / 2}\right)$ is a completely monotonic function of $\tau$. This last new class arose in our previous work on nonlocal Delaunay surfaces in $\mathbb{R}^n$. Due to their symmetry of revolution, it gave rise to a 1d problem involving an operator with a nonconvex kernel. Our proofs are based on a not so well-known Riesz rearrangement inequality on the circle $\mathbb{S}^1$ established in 1976. We also put in evidence a new regularity fact which is a truly nonlocal-semilinear effect and also occurs in the nonperiodic setting. Namely, for nonlinearities in $C^\beta$ and when $2 s+\beta<1$ ( $2 s$ being the order of the operator), the solution is not always $C^{2 s+\beta-\epsilon}$ for all $\epsilon>0$.
dc.format.extent47 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec753747
dc.identifier.issn0360-5302
dc.identifier.urihttps://hdl.handle.net/2445/226821
dc.language.isoeng
dc.publisherTaylor & Francis
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/https://doi.org/10.1080/03605302.2024.2441851
dc.relation.ispartofCommunications in Partial Differential Equations, 2025, vol. 50, num.1-2, p. 161-210
dc.relation.urihttps://doi.org/https://doi.org/10.1080/03605302.2024.2441851
dc.rights(c) Taylor & Francis, 2025
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.subject.classificationEquacions diferencials el·líptiques
dc.subject.classificationEquacions en derivades parcials
dc.subject.otherElliptic differential equations
dc.subject.otherPartial differential equations
dc.titlePeriodic solutions to integro-differential equations: variational formulation, symmetry, and regularity
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
876935.pdf
Mida:
546.83 KB
Format:
Adobe Portable Document Format