Carregant...
Fitxers
Tipus de document
ArticleVersió
Versió publicadaData de publicació
Llicència de publicació
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/189544
Machine learning from crowds using candidate set-based labelling
Títol de la revista
Director/Tutor
ISSN de la revista
Títol del volum
Recurs relacionat
Resum
Crowdsourcing is a popular cheap alternative in machine learning for gathering information from a set of annotators. Learning from crowd-labelled data involves dealing with its inherent uncertainty and inconsistencies. In the classical framework, each annotator provides a single label per example, which fails to capture the complete knowledge of annotators. We propose candidate labelling, that is, to allow annotators to provide a set of candidate labels for each example and thus express their doubts. We propose an appropriate model for the annotators, and present two novel learning methods that deal with the two basic steps (label aggregation and model learning) sequentially or jointly. Our empirical study shows the advantage of candidate labelling and the proposed methods with respect to the classical framework.
Matèries (anglès)
Citació
Citació
BEÑARAN-MUÑOZ, Iker, HERNÁNDEZ-GONZÁLEZ, Jerónimo, PÉREZ, Aritz. Machine learning from crowds using candidate set-based labelling. _IEEE Intelligent Systems_. 2022. [consulta: 30 de gener de 2026]. ISSN: 1541-1672. [Disponible a: https://hdl.handle.net/2445/189544]