Carregant...
Miniatura

Tipus de document

Article

Versió

Versió publicada

Data de publicació

Llicència de publicació

cc by-nc-nd (c) Beñaran-Muñoz, Iker et al., 2022
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/189544

Machine learning from crowds using candidate set-based labelling

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

Crowdsourcing is a popular cheap alternative in machine learning for gathering information from a set of annotators. Learning from crowd-labelled data involves dealing with its inherent uncertainty and inconsistencies. In the classical framework, each annotator provides a single label per example, which fails to capture the complete knowledge of annotators. We propose candidate labelling, that is, to allow annotators to provide a set of candidate labels for each example and thus express their doubts. We propose an appropriate model for the annotators, and present two novel learning methods that deal with the two basic steps (label aggregation and model learning) sequentially or jointly. Our empirical study shows the advantage of candidate labelling and the proposed methods with respect to the classical framework.

Citació

Citació

BEÑARAN-MUÑOZ, Iker, HERNÁNDEZ-GONZÁLEZ, Jerónimo, PÉREZ, Aritz. Machine learning from crowds using candidate set-based labelling. _IEEE Intelligent Systems_. 2022. [consulta: 30 de gener de 2026]. ISSN: 1541-1672. [Disponible a: https://hdl.handle.net/2445/189544]

Exportar metadades

JSON - METS

Compartir registre